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PARABOLIC MARCINKIEWICZ INTEGRALS ASSOCIATED
TO POLYNOMIALS COMPOUND CURVES AND
EXTRAPOLATION

FENG L1u AND DAIQING ZHANG

ABSTRACT. In this note we consider the parametric Marcinkiewicz inte-
grals with mixed homogeneity along polynomials compound curves. Un-
der the rather weakened size conditions on the integral kernels both on
the unit sphere and in the radial direction, the LP bounds of such oper-
ators are given by an extrapolation argument. Some previous results are
greatly extended and improved.

1. Introduction

Let R" (n > 2) be the n-dimensional Euclidean space and S"~! denote
the unit sphere in R" equipped with the induced Lebesgue measure do. Let
a; > 1(j = 1,...,n) be fixed real numbers. Define the function F : R™ X
(0,00) — R by F(x,p) = 2?21 x?p’%‘j, x = (x1,22,...,%,). It is clear that
for each fixed x € R™, the function F(z,p) is a decreasing function in p > 0.
We let p(z) denote the unique solution of the equation F(z,p) = 1. It was
showed in [15] that (R™, p) is a metric space which is often called the mixed
homogeneity space related to {a;}7_;. For A > 0, let Ay be the diagonal n x n
matrix Ay = diag{A\**,..., A% }. For a function ¢ : RT — R* and y € R", we
denote Ag(py)y by Ap(y), where RT := (0,00) and 3y = A1y € S™ 1.

The change of variables related to the spaces (R™, p) is given by the trans-
formation

x1 = p*cosby - cosb,_oco86, 1,

To = p*?cosby ---cosb,_osinb,_1,

Tp—1 = P~ cos by sin Oy,
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Ty = p" sin ;.

Thus dx = p®~1J(2")dpdo(x'), where p*~1J(2') is the Jacobian of the above
transform and o = Y7 ay, J(2') = Y7 aj(2})?. Obviously, J(z') €
C>®(S™~1) and there exists M > 0 such that

1<J@)<M, Vo' e S" L
It is easy to see that
ple)y=lz|, faog=ar=--=a,=1

Let Q be integrable on S™~! and satisfy
(1.1) / Q) (w)do(u) = 0,
STL*I

(1.2) Q(Asz) =Q(z), Vs >0and z € R

For d > 2 and a suitable mappings ® : R” — R? we define the parabolic
parametric Marcinkiewicz integral operators .Z§ , 4 on R? by

1 Q(y)h(p(y)) 2 i\ 1/2
t_g/p(y)qwf(w—@(y))dy} 7) ,

where f € Z(R?) (the Schwartz class), ¢ = o +iT (0,7 € R with ¢ > 0)
and h € A;(R"). Here A,(R") for v > 1 denotes the set of all measurable
functions h on RT satisfying the condition

(13) g 000 = ([

R 1/v
[Alla, ®+) = sup (R’l/ Ih(t)|7dt) < 0.
R>0 0

It is easy to check that L¥(RT) = A (R") € A, (RT) € A, (RT) for
0 <7 < 7 < oco. Also, let Np(RT), o > 0 be the set of all measur-
able functions h on RY satisfying N, (h) = Zm:l m*2"d,,(h) < oo with
dm(h) = supgez 27| E(k,m)|, where E(k,1) = {t € (2*,2*1] . |n(t)| < 2},
and

E(k,m) = {t € (2F,2"1] . 2m~1 < |h(t)] < 2™} for m > 2.

It follows from [22] that A, (RT) C N, (RT) for any @ > 0 and 1 < v < o0.

As is well known, the parabolic operators have a long history. It may go
back to Fabes and Riviére [15], Madych [20] and Calderén and Torchinsky [6].
Ifn=d, h(t) = ¢ =1 and ®(y) = y, the operator 4 ;, 4 recovers the classical
parabolic Marcinkiewicz integral operator denoted by ///Q, which was discussed
extensively by many authors. Xue, Ding and Yabuta [28] first proved that .#q
is bounded on LP(R™) for 1 < p < oo, provided that Q € LI(S™~1) for fixed
g > 1. Afterwards, Chen and Ding [7] (resp., [8]) extended the above result to
the case Q € L(log" L)1/2(S"~1) (resp., Q € H'(S™1)). Moreover, it follows
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from Wang, Chen and Yu’s work [25] (also see [3, 19]) that .Zq is of type (p, p)
for 28/(28 — 1) < p < 2B if Q € Fz(S"~1) for some 8 > 1, where

n—1y.— n— . / 1 B ’
Fs(S 1)._{(2 e L'(s" 1) geS;?l/Sn 1 1y )|(10g |§.y/|) do(y') < oo}
for all g > 0.
Note that
(1.4) ﬂ ]:ﬁ(Snfl) ¢ Hl(Snfl) ¢ U fg(S"il) and
A>1 B>1
() Fa(s"") & Llog" L(5" )
B>1
(1.5) L9(S™Y) C L(log™ L)(S™Y) € HY(S™1) C L(S™1);

(1.6) L(log™ L)P1(S™™1) € L(log™ L)?2(S™™1), Y 0 < B2 < bi;
(1.7)  L(log™ L)?(S"™Y) ¢ H'(S"™') ¢ L(log®™ L)?(S"71), V0O < B <1;

(L8) L{log" L)’ (§"~1) ¢ H'(S""), VA > 1.

For the general operator ///51}17(I> in the Euclidean setting, i.e., the case of
ap = = a, = 1, we denote A3, 4 by 11§y}, 4. If n = d, ®(y) = y and
h(t) = 1, the operator ug, n.o reduces to the classical parametric Marcinkiewicz
integral operator denoted by pg. The LP bounds of ud have been discussed
extensively by many authors. For example, see [5, 23, 24, 27] for the case
0 =1, [4, 17] for the case ¢ > 0, [12, 21] for the case p € C with Rep > 0.
On the other hand, the investigation of the parametric Marcinkiewicz integral
operators ué n.e With rough kernels on the unit sphere as well as in the radial

direction have also received a large amount of attention of many authors (see
[2, 9, 10, 11, 13] et al.). In particular, Al-Qassem and Pan [2] obtained the
following result.

Theorem A. Let ®(y) = P(y) = (Pi(y),..., Paly )) with P; being polynomial
on R™. Suppose that Q satisfies (1.1)-(1.2) cmd P(y) = —P(—vy).
(i) If Q € L(log™ L)Y/2(S"~1) and h € Ny 2(RT), then

||N(z,h,<1>(f | e (a)
< Cp(L+ (19 Logt Lyr/2(sn-1)) (1 + Nija(B) | fll Lrray, 2 < p < 00;
(ii) If Q € L(log™ L)(S™ 1) and h € N1(R"), then
1.0 (Pl Le@ay < Co(LHIU Laogt Lysm-1)) AFN1 () fllLr®ay, 1 <p < 2.

The constant C, = Cg,n,d,p,maxlgjgd deg (P;) 18 independent of the coefficients of
P; forall1 <j<d.
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In light of the aforementioned facts concerning the above Marcinkiewicz
integrals, we find it is natural to ask whether Theorem A holds if replacing
®(y) = P(y) by ®(y) = P(|ly|)y’ with P being a polynomial on R. Moreover,
another question, which arises from the above result, is the following:

Question 1. For the general case a; > 1(j =1,...,n), is #§ , & bounded on
LP(R™) under the same assumptions on Q and h in Theorem A, even in the
special case n = d and ®(y) = y?

In this paper, we will give an affirmative answer to these questions by the
following:

Theorem 1. Let n = d and ®(y) = (Pi((p(y)))y}, - - Pule(p(y)))yr) with
P; being real valued polynomials on R satisfying P;j(0) = 0 and ¢ € §. Here,
the function class § is the set of all function ¢ satisfying the condition (a) or
(b).

(a) ¢ : RT — (0,00) is a positive increasing C* function such that ty'(t) >
Cop(t) and ©(2t) < cup(t) for allt > 0, where Cy, and ¢, are independent of
t.

(b) ¢ : RT — (0,00) is a positive decreasing C* function such that ty'(t) <
—Cop(t) and ¢(t) < cp,p(2t) for all t > 0, where Cy, and c, are independent
of t.

Suppose that  satisfies (1.1)-(1.2).

(i) If Q € L(log™ L)Y/2(S"~1) and h € Ny 2(RT), then

45 1.0 ()l Le@n)
< O+ 1 Logt Lyrrz(sn-1)) (L + Nijp (W) fllr@ny, 2 < p < oo;
(ii) If Q € L(log™ L)(S™ ') and h € N1(RY), then
25 1.0 (Ol Le@ny < CAHNQ Log Ly(sn—1)) LN (W) fllLe@ny, 1 <p < 2.

The constant C' = C,,
P; for all1 < j <mn.

J0,pmax; <<, deg(P;),p 1S independent of the coefficients of

Remark 1. There are some model examples in the class §, such as t* (o >
0), t*(In(1+1))? (a, B > 0), tInln(e +t), real-valued polynomials P on R with
positive coefficients and P(0) = 0 and so on. We note that for any ¢ € 3,
there exists a constant B, > 1 such that ¢(2t) > B,p(t) for all ¢ > 0 if ¢
satisfies the condition (a), and ¢(t) > B,p(2t) if ¢ satisfies the condition (b)
(see [3, 13]). It should be pointed out that Theorem 1 is also new even for the
case ap = --- = ap, = 1, in the Euclidean setting.

Remark 2. Theorem 1 essentially improve the result of [1] (see [1, Theorem

1.8]), even in the case a1 = -+ = a, =1, n =d and Pi(t) = --- = P,(t) =
©(t) = t. One the other hand, by (1.4) and (1.7), Theorem 1 is distinct from
the results of [13, 26], even in the case a7 = -+ = a, = 1, n = d and

Pi(t) =--- = P,(t) = ¢(t) = t. Moreover, Theorem 1 greatly generalize and
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improve the main result in [5], even in the case oy = -+ = @, = 1, n = d and
=t.

Py(t) =+ = Po(t) = (1)
As several applications of Theorem 1, we have the following corollaries.

Corollary 1. Let n = d and ®(y) = Ap,(,)(y) with ¢ € §, and Py(t) =
ZZJ.VZI a;t’ with satisfying Py(t) > 0 if t # 0. Suppose that 0 satisfies (1.1)-
(1.2).

(i) If Q € L(log™ L)Y/2(S"~1) and h € Ny 2(RT), then

4G 1.0 (Pl e )
< CA+ 1920 Lgogt £yr2(sn-1)) (1 + Nijp(M) fllLrgn), 2 < p < oo;

(ii) If Q € L(log™ L)(S™1) and h € N1(RY), then
4G 1.0 (Ol Le@ny < CAHNQ Logt Ly(sn—1)) LN (W) fllLe@ny, 1 <p < 2.
The constant C' = Cp p o N,p s independent of the coefficients of Py.
Corollary 2. Letn=d and oy = -+ = o, = 1. Let ®(y) = Pn(o(|y]))y" with
p €5, and Pn(t) = vazl a;t'. Suppose that Q satisfies (1.1)-(1.2).

(i) If Q € L(log™ L)Y/2(S"~1) and h € Ny 2(RT), then

Hﬂgz,h@(f)HLp(Rn)
< CA+ 190 Lgogt £yr2(sn-1)) (1 + Nijp(W) fllrgn), 2 < p < oo;

(ii) If Q € L(log™ L)(S™1) and h € N1(R"), then
1.0 (OllLr@ny < CA+ULaogt Ly(sn-1)) L+ N1(B) || fllLe@n), 1 <p < 2.
The constant C' = Cy, p o N,, 5 independent of the coefficients of Py .

The paper is organized as follows. In Section 2 we will present some notations
and lemmas. The proof of Theorem 1 will be given in Section 3. We remark
that our main methods in the proof of Theorem 1 are taken from [2, 22], but
we add some new techniques. Especially, the proofs of (2.6) and (2.29) in
this paper are different from [2]. Throughout the paper, we let p’ denote the
conjugate index of p which satisfies 1/p + 1/p’ = 1. The letter C will stand
for positive constants not necessarily the same one at each occurrence but is
independent of the essential variables.

2. Preliminary lemmas

Let N = maxj<jc, deg(P;). For 1 < I < n, let P(t) = SN a;t'.
For 1 <s< Nandl<1<mn,let PO®) = S5 ait" and PE)(t) =

(P (), ..., PP (). Set PO(t) =0 and

®,(y) = (P (0(p)Whs - - -+ P ((p()))yh)-
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We can write

O (y)- €= &y ((p(y)))
=1

=33 &uaie(p(y))’

=1 i=1
=> (L&) -y )e(pw)),
i=1
where L; : R® — R" is the linear transformation given by

Li(€) = (aiq1&, ..., ainén)-

For 1 < s < N, let \; = rank(Ly). By [16, Lemma 6.1], there exist two
nonsingular linear transformations R : R*» — R* and Q, : R — R” such
that

(2.1) [Romy, Qs(§)] < [Ls(§)] < C|Rmy, Qs ()],

where C' depends only on n and 7} is a projection operator from R™ to RAs.
For 1 < s < N and t > 0, we define the family of measures {o}, ;} and the
related maximal operators o}, - and Mj 4,5 on R" by

— 1

o (&) =— exp(—2mi& - D, (y h(p(y)gsggy) dy:
h7t( : te /t/2<p(y)St ( ) o)

oh,s(f)(x) = sup [|of, ;| = f(2)];

teR+
2ql7l(k+1)
Mhp,q,,5(f)(z) = sup ok o] * f(2)]3dt,
keZ J2d' vk

where |0}, ;| is defined in the same way as o}, ;, but with Q replaced by |Q2| and
h replaced by |h|.
The following result follows from Lemmas 2.2 and 2.3 in [18].

Lemma 2.1. Let Q € LI(S™Y) for some ¢ > 1 and Py(t) = 2?21 a;t* for
some A € N\{0}. If ¢ € §, then for any 0 < ¢ < min{l/¢’,1/A} and £ € R™,
we have

/:2 /SH U u) exp(—iPr(9(1))€ - o ydo ()| L

< C@NIQ L1 lp(r) axg|™

forxe{1,2,...,N} and any r > 0. The constant C(p) is independent of , q
and the coefficients of Py, but depends on ¢.
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Lemma 2.2. Let Q € L9(S™ 1) satisfying (1.1)-(1.2) and h € A, (RT) for
some q, v € (1,2]. Suppose that p € F. Then for1 <s < N andt >0, { € R™,
there exists a constant C' > 0 such that

(2.2) max {||07, [ |77 ()] 1177, ()1} < Cllhlla, ) 19 ogso);

(2.3) max {|0/Z’:(§) — a1 (O |los (€)= o7 O]}
< Ol o @+ 190l Lagsn-1) () | Lo ()Y @79
o s {17 ) 177,16

< Cllhl o, @+ 190l Lacsn-1) (0(t)* | L (&))@,

The constant C' is independent of 2, h, q, v, but depends on .

Proof. Obviously, (2.2) holds. By a change of variable and Holder’s inequality,
we have

|05 (€) — o33 (€]

1 ) _

) (exp(~2mi€ - Ba(y)) — exp(—2mit - @, (y))) L) gy
/2<p(y)<

te

S/ |Lo(€)p(ply))* | 2 gy
/2<p(y)<
t
< //2|h<r>|%drnﬂnmnW(t)sws(@|
t
<

Cllhlla, @12 Lacsn-1yp(t)*|Ls(E)],
which combining with (2.2) implies that

|75.4(6) = 032 (O] < ClAlla, @) 19| agsn—1) (0())° [Ls (€))7,
Similarly,

[[05,:1(€) = 1052 1] < CllRllay @ 12l Lagsn—) (9 (1) Ls () 7).

Thus (2.3) holds. On the other hand, by a change of variable and Holder’s
inequality, invoking Lemma 2.1 we have

EG]

SC/ / exp(—2mi& - @4 (y))Q(y")do(y')
t/2"'JSn—1

(T)|%d7’
172/7 i , 21 1/7‘/
< Ol 1T (| [ 000 exp(zmie- . iots| )

SCHhHAW(Rﬂ||Q||LQ(S"*1)(‘P( L&)
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for any 0 < e < min{1/¢’,1/s}. Taking ¢ = 1/(2¢’s), we have
177.4(E)] < ClQUlLagsn-v Il ay @) (00| Ls (€))7 E1.

Similarly,
177, [(€)] < Ol pagsn-1llrlla, @+ (9(8)° | Ls (€))7 0.
This completes the proof of Lemma 2.2. O

Motivated by the idea in [14], we have the following result, which will play
a key role in the estimates on some vector-valued norm inequalities.

Lemma 2.3. Let Q, h, ¢ be as in Lemma 2.2. Then for 0 < s < N and any
1 < p < o0, there exists a constant C' > 0 such that

(2.5) lloh o (Nllze@ny < Clg—1)" v = 1) Rl a, @ I Lagsn—1) 1 | Lo @ny;
(2.6)
[ Mhq,,s(DllLe@ny < Clg = 1)y = D)7 HAlla, @y 190 Lagsn—) 1 f e @ny-

The constant C = Cy, p, , 15 independent of Q, h, q, v and the coefficients of P;
for1<j<n.

Proof. For convenience, we set A = (¢ —1)7 (v = 1) 7|l a, @) 12l La(sn-1y.-
It is easy to verify that
(2.7)

1

ah.s(f)(x) < sup ST

_ [Q2(y)h(p(y)l
kEZ 2(] ol |f($ ¢5(y))| p(y)a—l dy

/Qq’v/k<p(y)§2q/’v’(k+l)
For 0 < s < N, we define the family of measures {y s} and maximal operators
©e on R™ by

1

. F@)dpns(v) = Sy p(y};gp(y))f( s(y))du

/zq"v/k <p(y)<2d' 7' (k+1)
ps (f) (@) = sup ||prs| * f ()],
keZ

where |y | is defined in the same way as g s, but with 2 replaced by |Q| and
h replaced by |h|. Thus, we get form (2.7) that

(2.8) oh.s(F)(@) < s (1) ().
Therefore, to prove (2.5), it suffices to prove that
(2.9) s (HllLr @y < CpAlfllLr@ny, 1 <p < oo

Then by the proof of Lemma 2.2 and a straightforward calculation we get for
1<s<N,

(2.10) nal(©)] < CA@min {1, (p(297 %) |Ly())~ V@),
(2.11) 02 (€) — imaa |(€)] < CA(p(207* ) |Ly(e)) M 50,

In what follows, we prove (2.9) by induction on s.
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Case 1. Without loss of generality, we may assume that f is nonnegative
and || f|| Lr(rny < 00, It is easy to check that uf(f)(z) < CAf(x), which implies
(2.9) for s = 0.

Case 2. Suppose that (2.9) holds for s =m — 1, m € {1,..., N}. We shall
prove (2.9) for s = m. Let ¢ € C§°(R) be supported in {|¢t| <1} and 9(t) =1
for |t| < 1/2. Define the Borel measures {wy s}rez on R™ by

(212)  @om(©) = [l (€) — (27 *) ™ | Ry Qun(€))im—11(€)

for £ € R", where Ry, 7} , Qm are as in (2.1). It follows from (2.1) and
(2.10)-(2.11) that
(2.13)

(@ ()] < CA(min{1, (297 )™ L, (€)1, (0(29 7 F)™ | Ly (6)]) "1 1Y/ B,

In addition, by (2.13) and a well-known result on maximal functions (see [16]),
we have

2.14) |l (Dllze@ny < NGm(Hllr@ny + Cllpg—1 (Hllze@ny, 1 <p < oo,

(2.15)  [lwm (Dllze@ey S NGm(HllLe@ny + Clltr—1 (HllLe@n), 1 <p < oo,
where
* 2 1/2
win(f) = sup|wem| < f1 and G (F) = (D lweam + F12) .
kEZ kez

By our assumption we have

(2.16) a1 ()l Loy < CpAllfllLr@ny, 1 <p < oo,
where C), is independent of ¢, v and the coefficients of P; for all 1 < j < n. It

remains to prove that

(2.17) [Gm(H)llLe@ny < CpAllfllLr@n), 1 <p < oo,

where C), is as above. By a well-known property of Rademacher’s functions,
(2.17) follows from

(2.18) IV (Dllze@ny < CppAllfllp@ny, 1 <p < o0,

where V(f) = > ez €kwWhm * [ with € = {ex}, ¢ = lor — 1 and C,, is
independent of ¢, v and the coefficients of {P;} for all 1 < j < n. Below we
prove (2.18). Choose a sequence of nonnegative functions {Uy}rez in C§°(R)
such that

supp(¥y) C [p(277 EED)=m (207 =Dy=m] - N g2 (1) = 1,
keZ
|(d/dt) ¥ (t)] < Cilt|™ (j=1,2,...), V>0, j€N,

where C; are independent of ¢, v and k. Define the Fourier multiplier operator
Sj by

S 7€) = Ui (| Rl Qu(©))F(€) for j € Z.
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Then
VI(F) =D enwram * ) SinSinf
(2.19) hez jer
=D > erSisn(@rm * Sixnf) == Y Vi"(f).
JEL KEL JEZ

By the Littlewood-Paley theory, we have

1/2
(kez;wk,m * Sj+kf|2) HLP(RH), 1<p<oo.

(220) [V/"(H)llzrer) < G

This combining with Plancherel’s theorem yields

IVl < CH(Z |wWh,m * j+kf|2)1/2’ 2

keZ L2(R™)
<C (@D (E)21£(£) 4,
]geZZ/Dj+k ’

where
Dy ={¢€R": (277 TN < |Rpumh Qu(€)] < p(277 D)7,
We get from (2.1), (2.13) and Remark 1 that
(2.21) V" (llzz@ny < CA(B&Q_j)/2X{j22} + B&j+1)/2X{j<2})||f||L2(]R")-
This together with (2.19) implies
Ve (Dllp2ny < CAl|fllL2n).-
Thus,
G ()l 2@ny < CA|lfllL2@n,

which combining the Littlewood-Paley theory, (2.13), (2.15)-(2.16) with the
proof of Lemma in [14, p. 544] implies that

(222) V(e < CoAllfllpoganys p =4 or p = 473,

Interpolating between (2.21) and (2.22) and combining with (2.19), we get
IV (L) < CAIfllLr@n), 4/3 <p <4,

which leads to

(2.23) G (F)llr@ny < CA|fllLo@ny, 4/3 <p <4

Reasoning as above, (2.13), (2.15)-(2.16), (2.23), the proof of Lemma in [14,
p.b44], the Littlewood-Paley theory and interpolation imply

IV (Dllze@ny < CA[lfllLr@n), 8/7T <p <8.
By using this argument repeatedly, we can obtain ultimately that
IV (Dllzr@ny < CA|fllLe@nys 1 <p < o0,
This proves (2.18) and completes the proof of (2.5).
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Below we prove (2.6). It suffices to prove that

(2.24) [Mh,q.,s(If DIl o ny < CpAllfll e

forall 0 < s < Nand 1 < p < oo, Cp is independent of Q, h, ¢,y and the
coefficients of P; for all 1 < j < n. We shall prove (2.24) by induction on s.
When s = 0, it is easy to see that

Mp,q,s(|f)(2) < CAlf ()],

which implies (2.24) for s = 0. Assume that (2.24) holds for s =m —1,m €
{1,..., N}, we will prove that (2.24) holds for s = m. Let ¢ € C§°(R) be as
in (2.12). Define the family of measures { g m }rez by

94’ ' (k+1) /\
(225)  Arm(§) = e o |(€) §dt = (@277 *) ™[Ry Qun(€)])
a’y
94’ (k+1) o
x// o ()t
2a’v'k

By Lemma 2.2 and (2.1), one can easily check that
(2.26)

Nean ()] < CAmin{L, o277 *) ™ Lun (€], (027 F) ™ | L () 7)) O,

By the definition of A ,, and a well known result on maximal function (see
[16]), we have

||Mh,q,%m(|f|)||LP(Rn)

(2.27)
< Ngm(fDllLr@ny + CliMp, gy, m—1(If ) r@®ny, 1 <p < oo,
A,Tn f p(RN
(2.28) A (FDI e rny
< lgm (| fDll e @ny + Cll Mg y,m—1(IfDI e @ny, 1 <p < oo,
where

B . 9 1/2 N B .
gn(£) = (32 P * S17) 7 and X5, () = supl i 1.

k€EZ

From our assumption, (2.26)-(2.28) and the similar arguments as in getting
(2.5), we get (2.24) for s = m. Thus (2.24) holds. Lemma 2.3 is proved. O

Lemma 2.4. Let h, 2, ¢ be as in Lemma 2.2. Then for 1 < s < N and any
1 < p < o0, there exists a constant C > 0 such that
(2.29)

od’ v/ (k+1)

s 21 1/2
I et
kez /27"

< Clg—1) "2 (y=1) "2 o, @) 19l agsn1

Ly (®")

(> \gkIZ)l/QHLP(Rn>, 2 < p < oo;

k€EZ
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(2.30)
2ql7l(k+1)

1/2
IS, toherarta)”]
QQ,W,K‘

keZ

< Clg=1)"'(y=1) 7 M[Alla, @)1 Lagsn-1)

Lr(R")

(Z |gk|2) 1/2‘

kEZ

I<p<2

Lr(®my
The constant C' = Cy, p, 1s independent of €1, h, q, v and the coefficients of
{P;} forall1 < j<n.

Proof. We shall use the method in [2]. First we prove (2.29). For fixed 2 <
p < 00, by duality, there exists a nonnegative function f in L(®/ 2>’(R”) with
£l Lwr2y gy < 1 such that

94’ ' (k+1) 1/2))2
(S L et
ez 2q"y’k ’ LP(]Rn)
@3
= / Z/Q/ . s ¢ * gl > dt f (x)da.
" ez’ 297

By a change of variable and Holder’s inequality, we obtain

(2.32) oo * ge(@)]?
1

2
<(7 [ e o) el
t t/2<p(y)<t ply)*~

¢ 2
<([ [ oo - 2aw)IiRw)I o)) bar)
t/2JSn—1
< CHhHZW(Rﬂ||Q||L<1(S”'*1)
¢
([ ] e = Ay PRI o ()P bdr).
/2 J gn—1
Thus by (2.31)-(2.32) and Holder’s inequality, one can check that
(2.33)
9d'y (k+1)

1/2
I(E ), toherarta)”]
Qq/‘y/k

keZ

< ClIRIA, g IR ogsnry /R ) kZZ |98(2) [ Mjp 25,0, (F) (~ )t
S

(Z \gkl2)1/2’

kEZ

where f(z) = f(—z) and M|h‘2771q1%5(f) denotes M2+ 4,5 With 0 = 1. Note
that |h(-)]*77 € A, /(2—)(R"), then by (2.6) we have

2

LP(R™)

2

”M\h\z*%qmsq)HL(p/2>’(Rn),

< ORI, 1 Lagsn .

M n2=,q,7,s (I F DIl Leor2rr @y
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< Cla=D)7 = DR Ay ey @) 19l agsn—1) [ £l L2y ey
< Cla—1)7 (v = )RR (e Q0 agsn-1y,

which combining with (2.33) implies (2.29). Next, we prove (2.30). Let 1 <
p < 2. By duality, there exist functions {fg(z,t)} define on R" x R* with

{fkCs )M Lo e o2 (220275 207+ 4], at 2y < 1 such that

20 ~' (k+1) 1/2
(2.34) H / o *gk2ldt) ‘
Z 9a | h,t | t Lr(R™)
2q"v’(k+l)
<[> 041 9u() f(a, )
R™ jez, /29 7*
< Cla= 1720 = 07 (o) o IO
=
where
94’ (k+1)
Hf)@) =D [ lohes folw, )P 1dt and fi(a,t) = f(=a.1).
kez /2"

Since p’ > 2, there exists a nonnegative function u € L®'/2'(R™) such that

2ql7l(k+1)

V) oy = 3 / / 00 % Folr, )P Ldt u(z)da.

ke 209"k
By a similar argument as in (2.32) and (2.5), we have

(2.35)

I () Lo /2 ey

0d’ v (k+1)
< CIRIA, @ 10 asesy | Fhpmn @)(=2) (D [File, ) Lt ) da
Y Rn 2a'7'k
kEZ
Qq ~' (k+1)
< CIIAIL, o 190 zasnn | > / el O Fat)|| o 1 o @) 0 e

<Clg-1)7'y-1)" 1”hHAW(R'F)”Q”L‘I(S"—l)a

where t(x) = u(—2z) and 02—~ (@) denotes O 2~ J(@) with o = 1. (2.30)

follows from (2.34) and (2.35). This completes the proof of Lemma 2.4. O
3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We only prove Theorem
1 for the case ¢ € § with satisfying (a), the rest of Theorem 1 can be obtained
similarly. Assume that h € A, (R™) for some v € (1,2] and Q € LY(S"1) for
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some ¢ € (1,2] with satisfying (1.1)-(1.2). By Minkowski’s inequality, we can
write

(B1) MG pe(f)(@)
oo 0
(/ Zootlg/zk Lt<p(y) <2kt (x—@(y))g(py()y};a ‘ dy‘ 1dt)

0
1 ¢ 2 1/2
() =) o = (y) 2D g L
0 k=lt<p(y)<2kt

=2yl P par)

Let 9 be as in (2.12). For 1 < s < N, t € RT and ¢ € R, we define the family
of measures {v; ;} by

Ua(©) = 5,&) [ v |Rim.Q;(E))

1/2

IN

IN

s<j<N
(3.2) o _
—oi € T wley 1R, Q0.
s—1<j<N
It is clear that
N
(3.3) O’}]xt = Z Vts.
s=1
Here we use the convention II;cpa; = 1. By Lemma 2.1 and (2.1), we get
(3.4)
ZN(3]

@) 12 Lagsn—1) min{L, o(8)°| Ly (€)1, (p(8)°*[Ls(€)) T}/ 7'

for 1 < s < N. The constant C' is independent of €2, h, g, v and the coefficients
of P; for all 1 < j < mn. This together with a straightforward calculation yields
that

20,7,(k+1) 1/2
— 21
s Zdt
([, \er)
< Cla— 1) = 1) 2l ) |2 g
xmin{ L (2 T4 LL(O), (o2 THILE) D),

(3.5)

where C' is independent of €2, h, ¢, v and the coefficients of P; forall 1 < j < n.
It follows from (3.1), (3.3) and Minkowski’s inequality that

36 8,00 <03 ([l s@Pa) " = o i
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Choose a sequence of nonnegative functions {¥y}rez in C§°(R) such that

supp(W) C [p(277 (D)0, o207 D)7, R T w(r)
keZ
|(d/dt) W (t)] < Cslt|™7 (j =1,2,...) forallt>0andj€N,

where C; are independent of ¢, v, k. Define the Fourier multiplier operator I';
by

(3.7) T (D) = (| Rend Qu(&)NF(©) for j € .
Then we have
(3.8) M(F) (@) <M (f) (@)
i€Z
where
Z /241/7'(k+1) - )1/2
|Ve,s * Do f ()" 3dt .
kez” 27" o

Below we estimate the L? estimates for .#; ;. By Lemma 2.4 and the definition
of v, we have for 1 < s < N, there exists a positive constant C = C,, ,,
which is independent of €2, h, ¢, v such that

©s

(3.9)
20 ¥ (k+1) 1/2
Z/ |ve,s * gk|2%dt) } .
ez’ 2 (R™)
“1/2 “1/2 2\ /2
< Cla =)0 = 1) 2 bl e 1 s | (X lowl?) ) 0 252 < 005
keZ
(3.10)
20/7/(k+1) 1/2
H(Z/,/ s <o rar) |
kez” 297k Ly (®m)
< Ca =17 0 = D7 Il o) 19 Lagsn ) (Zwu )y 1P <2

By (3.9)-(3.10) and the Littlewood-Paley theory, we have
(3.11)
| 4s,i ()|l Lo (mny

9d’ v/ (k+1)

1/2
Lo b Tand@Phdt) ooy
kez 27

< Cla - 1727 = )72l oy [ gagsns | (3 s f ) oo
keZ

< Clg— 1) Y2 (v = 1)7Y2h)| a0 19l Lagsm-1) | Fll Logny, 2 < p < oo
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Similarly,
l4s.i(f)|| e mn)
<Cla—1)"'y =17 Mlla, @l L fllLr@ey, 1<p<2.

On the other hand, by (2.1), (3.5), Remark 1 and Plancherel’s theorem, we
have

(3.12)

[ A s i (£ 72 mmy

) 9a’ v (k+1)
=3 [ R QuEDFIFOR( [ mora)de
(3.13) hez -
7o (€)% £rey |2
<[ (L., moraior

<Clg-1)7 'y - 1)71||h||2AW(R+)||Q||2Lq(5n71)Di2||f||2L2(Rn),
where D, = B&2—i)/2x{i22} + B@/QX{KQ} and
Eipr = {6 € R": (27 0THD) ™ < Rl Qu(€)] < (270 0FHFD) 7).
Thus
- 4s,i( )|l 2 (rny
<Clg-1)""2(v- 1)71/2||h||AW(]R+)”Q”Lq(Snfl)DinHLz(]R")-

By interpolation between (3.11) and (3.14) leads to
(3.15)
[ A s,i (F)| o ()

< Clg=1) "2 (=172 Al a, @) Q] agsn -1y D7 [ f | Loy, 2 < p < 00

The constant «,, depends only on p. It follows from (3.8) and (3.15) that
(3.16)
A ()| o e

< Clg—1)"Y2(y = 1) 2 |h)| s, @ty 19U Lagsn-1) | | Le(rny, 2 < p < oc.
Similarly, by (3.8) and interpolation between (3.12) and (3.14), we have
(3.17) [ ()l e ()
<Clg—1)""(y— 1)_1||h||A7(]R+)||Q||LQ(S”'*1)”f”LP(]R"); l<p<2

Using (3.6), (3.16)-(3.17), we get
(3.18)
|25 1.0 ()l Lo @ny

< Cla=1)72 0y = D)7Vl ay @) 190 Lagsnn) | llzony, 2 < p < oo,

|45 1.0 ()l o ®ny
< C(q - 1)71(7 - 1)*1||h||A,Y(]R+)||Q||Lq(5n—1)||f||Lp(Rn), l<p<2.

(3.14)

(3.19)
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The constant C' = Cyp p.n,, is independent of €2, h, g, v. Finally, Theorem
1 follows directly from (3.18)-(3.19) and an extrapolation argument as in the
proof of [22, Theorem 1.2].
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