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PARABOLIC MARCINKIEWICZ INTEGRALS ASSOCIATED

TO POLYNOMIALS COMPOUND CURVES AND

EXTRAPOLATION

Feng Liu and Daiqing Zhang

Abstract. In this note we consider the parametric Marcinkiewicz inte-
grals with mixed homogeneity along polynomials compound curves. Un-
der the rather weakened size conditions on the integral kernels both on
the unit sphere and in the radial direction, the L

p bounds of such oper-
ators are given by an extrapolation argument. Some previous results are
greatly extended and improved.

1. Introduction

Let Rn (n ≥ 2) be the n-dimensional Euclidean space and Sn−1 denote
the unit sphere in Rn equipped with the induced Lebesgue measure dσ. Let
αj ≥ 1 (j = 1, . . . , n) be fixed real numbers. Define the function F : Rn ×
(0,∞) −→ R by F (x, ρ) =

∑n
j=1 x

2
jρ

−2αj , x = (x1, x2, . . . , xn). It is clear that

for each fixed x ∈ Rn, the function F (x, ρ) is a decreasing function in ρ > 0.
We let ρ(x) denote the unique solution of the equation F (x, ρ) = 1. It was
showed in [15] that (Rn, ρ) is a metric space which is often called the mixed
homogeneity space related to {αj}nj=1. For λ > 0, let Aλ be the diagonal n×n

matrix Aλ = diag{λα1 , . . . , λαn}. For a function φ : R+ → R+ and y ∈ Rn, we
denote Aφ(ρ(y))y

′ by Aφ(y), where R+ := (0,∞) and y′ = Aρ(y)−1y ∈ Sn−1.
The change of variables related to the spaces (Rn, ρ) is given by the trans-

formation

x1 = ρα1 cos θ1 · · · cos θn−2 cos θn−1,

x2 = ρα2 cos θ1 · · · cos θn−2 sin θn−1,

...

xn−1 = ραn−1 cos θ1 sin θ2,
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xn = ραn sin θ1.

Thus dx = ρα−1J(x′)dρdσ(x′), where ρα−1J(x′) is the Jacobian of the above
transform and α =

∑n
j=1 αj , J(x

′) =
∑n

j=1 αj(x
′
j)

2. Obviously, J(x′) ∈

C∞(Sn−1) and there exists M > 0 such that

1 ≤ J(x′) ≤M, ∀ x′ ∈ Sn−1.

It is easy to see that

ρ(x) = |x|, if α1 = α2 = · · · = αn = 1.

Let Ω be integrable on Sn−1 and satisfy

(1.1)

∫

Sn−1

Ω(u)J(u)dσ(u) = 0,

(1.2) Ω(Asx) = Ω(x), ∀ s > 0 and x ∈ Rn.

For d ≥ 2 and a suitable mappings Φ : Rn → Rd, we define the parabolic
parametric Marcinkiewicz integral operators M

̺
Ω,h,Φ on Rd by

(1.3) M
̺
Ω,h,Φ(f)(x) =

( ∫ ∞

0

∣∣∣ 1
t̺

∫

ρ(y)≤t

Ω(y)h(ρ(y))

ρ(y)α−̺
f(x− Φ(y))dy

∣∣∣
2 dt

t

)1/2

,

where f ∈ S (Rd) (the Schwartz class), ̺ = σ + iτ (σ, τ ∈ R with σ > 0)
and h ∈ ∆1(R+). Here ∆γ(R+) for γ ≥ 1 denotes the set of all measurable
functions h on R+ satisfying the condition

‖h‖∆γ(R+) = sup
R>0

(
R−1

∫ R

0

|h(t)|γdt
)1/γ

<∞.

It is easy to check that L∞(R+) = ∆∞(R+) ( ∆γ2(R
+) ( ∆γ1(R

+) for
0 < γ1 < γ2 < ∞. Also, let Nα(R+), α > 0, be the set of all measur-
able functions h on R+ satisfying Nα(h) =

∑
m=1m

α2mdm(h) < ∞ with

dm(h) = supk∈Z
2−k|E(k,m)|, where E(k, 1) = {t ∈ (2k, 2k+1] : |h(t)| ≤ 2},

and

E(k,m) = {t ∈ (2k, 2k+1] : 2m−1 < |h(t)| ≤ 2m} for m ≥ 2.

It follows from [22] that ∆γ(R+) ( Nα(R+) for any α > 0 and 1 < γ <∞.
As is well known, the parabolic operators have a long history. It may go

back to Fabes and Rivière [15], Madych [20] and Calderón and Torchinsky [6].
If n = d, h(t) = ̺ = 1 and Φ(y) = y, the operator M

̺
Ω,h,Φ recovers the classical

parabolic Marcinkiewicz integral operator denoted by MΩ, which was discussed
extensively by many authors. Xue, Ding and Yabuta [28] first proved that MΩ

is bounded on Lp(Rn) for 1 < p < ∞, provided that Ω ∈ Lq(Sn−1) for fixed
q > 1. Afterwards, Chen and Ding [7] (resp., [8]) extended the above result to
the case Ω ∈ L(log+ L)1/2(Sn−1) (resp., Ω ∈ H1(Sn−1)). Moreover, it follows
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from Wang, Chen and Yu’s work [25] (also see [3, 19]) that MΩ is of type (p, p)
for 2β/(2β − 1) < p < 2β if Ω ∈ Fβ(S

n−1) for some β > 1, where

Fβ(S
n−1) :=

{
Ω ∈ L1(Sn−1) : sup

ξ∈Sn−1

∫

Sn−1

|Ω(y′)|
(
log

1

|ξ · y′|

)β

dσ(y′) <∞
}

for all β > 0.
Note that

⋂

β>1

Fβ(S
n−1) * H1(Sn−1) *

⋃

β>1

Fβ(S
n−1) and(1.4)

⋂

β>1

Fβ(S
n−1) * L log+ L(Sn−1);

(1.5) Lq(Sn−1) ( L(log+ L)(Sn−1) ( H1(Sn−1) ( L1(Sn−1);

(1.6) L(log+ L)β1(Sn−1) ( L(log+ L)β2(Sn−1), ∀ 0 < β2 < β1;

(1.7) L(log+ L)β(Sn−1) * H1(Sn−1) * L(log+ L)β(Sn−1), ∀ 0 < β < 1;

(1.8) L(log+ L)β(Sn−1) ( H1(Sn−1), ∀ β ≥ 1.

For the general operator M
̺
Ω,h,Φ in the Euclidean setting, i.e., the case of

α1 = · · · = αn = 1, we denote M
̺
Ω,h,Φ by µ̺

Ω,h,Φ. If n = d, Φ(y) = y and

h(t) = 1, the operator µ̺
Ω,h,Φ reduces to the classical parametric Marcinkiewicz

integral operator denoted by µ̺
Ω. The Lp bounds of µ̺

Ω have been discussed
extensively by many authors. For example, see [5, 23, 24, 27] for the case
̺ ≡ 1, [4, 17] for the case ̺ > 0, [12, 21] for the case ̺ ∈ C with Re̺ > 0.
On the other hand, the investigation of the parametric Marcinkiewicz integral
operators µ̺

Ω,h,Φ with rough kernels on the unit sphere as well as in the radial

direction have also received a large amount of attention of many authors (see
[2, 9, 10, 11, 13] et al.). In particular, Al-Qassem and Pan [2] obtained the
following result.

Theorem A. Let Φ(y) = P(y) = (P1(y), . . . , Pd(y)) with Pj being polynomial

on Rn. Suppose that Ω satisfies (1.1)-(1.2) and P(y) = −P(−y).
(i) If Ω ∈ L(log+ L)1/2(Sn−1) and h ∈ N1/2(R+), then

‖µ̺
Ω,h,Φ(f)‖Lp(Rd)

≤ Cp(1 + ‖Ω‖L(log+ L)1/2(Sn−1))(1 +N1/2(h))‖f‖Lp(Rd), 2 ≤ p <∞;

(ii) If Ω ∈ L(log+ L)(Sn−1) and h ∈ N1(R+), then

‖µ̺
Ω,h,Φ(f)‖Lp(Rd) ≤ Cp(1+‖Ω‖L(log+ L)(Sn−1))(1+N1(h))‖f‖Lp(Rd), 1 < p < 2.

The constant Cp = C̺,n,d,p,max1≤j≤d deg (Pj) is independent of the coefficients of

Pj for all 1 ≤ j ≤ d.
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In light of the aforementioned facts concerning the above Marcinkiewicz
integrals, we find it is natural to ask whether Theorem A holds if replacing
Φ(y) = P(y) by Φ(y) = P (|y|)y′ with P being a polynomial on R. Moreover,
another question, which arises from the above result, is the following:

Question 1. For the general case αj ≥ 1 (j = 1, . . . , n), is M
̺
Ω,h,Φ bounded on

Lp(Rn) under the same assumptions on Ω and h in Theorem A, even in the

special case n = d and Φ(y) = y?

In this paper, we will give an affirmative answer to these questions by the
following:

Theorem 1. Let n = d and Φ(y) = (P1(ϕ(ρ(y)))y
′
1, . . . , Pn(ϕ(ρ(y)))y

′
n) with

Pj being real valued polynomials on R satisfying Pj(0) = 0 and ϕ ∈ F. Here,

the function class F is the set of all function ϕ satisfying the condition (a) or

(b).
(a) ϕ : R+ → (0,∞) is a positive increasing C1 function such that tϕ′(t) ≥

Cϕϕ(t) and ϕ(2t) ≤ cϕϕ(t) for all t > 0, where Cϕ and cϕ are independent of

t.
(b) ϕ : R+ → (0,∞) is a positive decreasing C1 function such that tϕ′(t) ≤

−Cϕϕ(t) and ϕ(t) ≤ cϕϕ(2t) for all t > 0, where Cϕ and cϕ are independent

of t.
Suppose that Ω satisfies (1.1)-(1.2).
(i) If Ω ∈ L(log+ L)1/2(Sn−1) and h ∈ N1/2(R+), then

‖M ̺
Ω,h,Φ(f)‖Lp(Rn)

≤ C(1 + ‖Ω‖L(log+ L)1/2(Sn−1))(1 +N1/2(h))‖f‖Lp(Rn), 2 ≤ p <∞;

(ii) If Ω ∈ L(log+ L)(Sn−1) and h ∈ N1(R+), then

‖M ̺
Ω,h,Φ(f)‖Lp(Rn) ≤ C(1+‖Ω‖L(log+ L)(Sn−1))(1+N1(h))‖f‖Lp(Rn), 1 < p < 2.

The constant C = Cn,̺,p,max1≤j≤n deg(Pj),ϕ is independent of the coefficients of

Pj for all 1 ≤ j ≤ n.

Remark 1. There are some model examples in the class F, such as tα (α >
0), tα(ln(1+ t))β (α, β > 0), t ln ln(e+ t), real-valued polynomials P on R with
positive coefficients and P (0) = 0 and so on. We note that for any ϕ ∈ F,
there exists a constant Bϕ > 1 such that ϕ(2t) ≥ Bϕϕ(t) for all t > 0 if ϕ
satisfies the condition (a), and ϕ(t) ≥ Bϕϕ(2t) if ϕ satisfies the condition (b)
(see [3, 13]). It should be pointed out that Theorem 1 is also new even for the
case α1 = · · · = αn = 1, in the Euclidean setting.

Remark 2. Theorem 1 essentially improve the result of [1] (see [1, Theorem
1.8]), even in the case α1 = · · · = αn = 1, n = d and P1(t) = · · · = Pn(t) =
ϕ(t) = t. One the other hand, by (1.4) and (1.7), Theorem 1 is distinct from
the results of [13, 26], even in the case α1 = · · · = αn = 1, n = d and
P1(t) = · · · = Pn(t) = ϕ(t) = t. Moreover, Theorem 1 greatly generalize and
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improve the main result in [5], even in the case α1 = · · · = αn = 1, n = d and
P1(t) = · · · = Pn(t) = ϕ(t) = t.

As several applications of Theorem 1, we have the following corollaries.

Corollary 1. Let n = d and Φ(y) = APN (ϕ)(y) with ϕ ∈ F, and PN (t) =∑N
i=1 ait

i with satisfying PN (t) > 0 if t 6= 0. Suppose that Ω satisfies (1.1)-
(1.2).

(i) If Ω ∈ L(log+ L)1/2(Sn−1) and h ∈ N1/2(R+), then

‖M ̺
Ω,h,Φ(f)‖Lp(Rn)

≤ C(1 + ‖Ω‖L(log+ L)1/2(Sn−1))(1 +N1/2(h))‖f‖Lp(Rn), 2 ≤ p <∞;

(ii) If Ω ∈ L(log+ L)(Sn−1) and h ∈ N1(R+), then

‖M ̺
Ω,h,Φ(f)‖Lp(Rn) ≤ C(1+‖Ω‖L(log+ L)(Sn−1))(1+N1(h))‖f‖Lp(Rn), 1 < p < 2.

The constant C = Cn,p,̺,N,ϕ is independent of the coefficients of PN .

Corollary 2. Let n = d and α1 = · · · = αn = 1. Let Φ(y) = PN (ϕ(|y|))y′ with

ϕ ∈ F, and PN (t) =
∑N

i=1 ait
i. Suppose that Ω satisfies (1.1)-(1.2).

(i) If Ω ∈ L(log+ L)1/2(Sn−1) and h ∈ N1/2(R+), then

‖µ̺
Ω,h,Φ(f)‖Lp(Rn)

≤ C(1 + ‖Ω‖L(log+ L)1/2(Sn−1))(1 +N1/2(h))‖f‖Lp(Rn), 2 ≤ p <∞;

(ii) If Ω ∈ L(log+ L)(Sn−1) and h ∈ N1(R+), then

‖µ̺
Ω,h,Φ(f)‖Lp(Rn) ≤ C(1+‖Ω‖L(log+ L)(Sn−1))(1+N1(h))‖f‖Lp(Rn), 1 < p < 2.

The constant C = Cn,p,̺,N,ϕ is independent of the coefficients of PN .

The paper is organized as follows. In Section 2 we will present some notations
and lemmas. The proof of Theorem 1 will be given in Section 3. We remark
that our main methods in the proof of Theorem 1 are taken from [2, 22], but
we add some new techniques. Especially, the proofs of (2.6) and (2.29) in
this paper are different from [2]. Throughout the paper, we let p′ denote the
conjugate index of p which satisfies 1/p + 1/p′ = 1. The letter C will stand
for positive constants not necessarily the same one at each occurrence but is
independent of the essential variables.

2. Preliminary lemmas

Let N = max1≤j≤n deg(Pj). For 1 ≤ l ≤ n, let Pl(t) =
∑N

i=1 ai,lt
i.

For 1 ≤ s ≤ N and 1 ≤ l ≤ n, let P
(s)
l (t) =

∑s
i=1 ai,lt

i and P (s)(t) =

(P
(s)
1 (t), . . . , P

(s)
n (t)). Set P (0)(t) = 0 and

Φs(y) = (P
(s)
1 (ϕ(ρ(y)))y′1, . . . , P

(s)
n (ϕ(ρ(y)))y′n).
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We can write

Φs(y) · ξ =
n∑

l=1

ξly
′
lP

(s)
l (ϕ(ρ(y)))

=
n∑

l=1

s∑

i=1

ξly
′
lai,lϕ(ρ(y))

i

=

s∑

i=1

(Li(ξ) · y
′)ϕ(ρ(y))i,

where Li : Rn → Rn is the linear transformation given by

Li(ξ) = (ai,1ξ1, . . . , ai,nξn).

For 1 ≤ s ≤ N , let λs = rank(Ls). By [16, Lemma 6.1], there exist two
nonsingular linear transformations Rs : Rλs → Rλs and Qs : Rn → Rn such
that

(2.1) |Rsπ
n
λs
Qs(ξ)| ≤ |Ls(ξ)| ≤ C|Rsπ

n
λs
Qs(ξ)|,

where C depends only on n and πn
λs

is a projection operator from Rn to Rλs .
For 1 ≤ s ≤ N and t > 0, we define the family of measures {σs

h,t} and the
related maximal operators σ∗

h,s and Mh,q,γ,s on Rn by

σ̂s
h,t(ξ) =

1

t̺

∫

t/2<ρ(y)≤t

exp(−2πiξ · Φs(y))
h(ρ(y))Ω(y)
ρ(y)α−̺ dy;

σ∗
h,s(f)(x) = sup

t∈R+

||σs
h,t| ∗ f(x)|;

Mh,q,γ,s(f)(x) = sup
k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

||σs
h,t| ∗ f(x)|

1
t dt,

where |σs
h,t| is defined in the same way as σs

h,t, but with Ω replaced by |Ω| and
h replaced by |h|.

The following result follows from Lemmas 2.2 and 2.3 in [18].

Lemma 2.1. Let Ω ∈ Lq(Sn−1) for some q > 1 and Pλ(t) =
∑λ

i=1 ait
i for

some λ ∈ N\{0}. If ϕ ∈ F, then for any 0 < ǫ < min{1/q′, 1/λ} and ξ ∈ Rn,

we have
∫ r

r/2

∣∣∣
∫

Sn−1

Ω(u′) exp(−iPλ(ϕ(t))ξ · u
′)dσ(u′)

∣∣∣
2
1
t dt

≤ C(ϕ)‖Ω‖2Lq(Sn−1)|ϕ(r)
λaλξ|

−ǫ

for λ ∈ {1, 2, . . . , N} and any r > 0. The constant C(ϕ) is independent of Ω, q
and the coefficients of Pλ, but depends on ϕ.
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Lemma 2.2. Let Ω ∈ Lq(Sn−1) satisfying (1.1)-(1.2) and h ∈ ∆γ(R+) for

some q, γ ∈ (1, 2]. Suppose that ϕ ∈ F. Then for 1 ≤ s ≤ N and t > 0, ξ ∈ Rn,

there exists a constant C > 0 such that

(2.2) max
{
‖σs

h,t‖, |σ̂
s
h,t(ξ)|, ||̂σ

s
h,t|(ξ)|

}
≤ C‖h‖∆γ(R+)‖Ω‖Lq(Sn−1);

(2.3)
max

{
|σ̂s

h,t(ξ) − σ̂s−1
h,t (ξ)|,

∣∣|̂σs
h,t|(ξ)− |̂σs−1

h,t |(ξ)
∣∣}

≤ C‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)(ϕ(t)
s|Ls(ξ)|)

1/(2sγ′q′);

(2.4)
max

{
|σ̂s

h,t(ξ)|, ||̂σ
s
h,t|(ξ)|

}

≤ C‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)(ϕ(t)
s|Ls(ξ)|)

−1/(2sγ′q′).

The constant C is independent of Ω, h, q, γ, but depends on ϕ.

Proof. Obviously, (2.2) holds. By a change of variable and Hölder’s inequality,
we have

∣∣σ̂s
h,t(ξ)− σ̂s−1

h,t (ξ)
∣∣

=
∣∣∣ 1
t̺

∫

t/2<ρ(y)≤t

(exp(−2πiξ · Φs(y))− exp(−2πiξ · Φs−1(y)))
Ω(y)h(ρ(y))
ρ(y)α−̺ dy

∣∣∣

≤

∫

t/2<ρ(y)≤t

|Ls(ξ)ϕ(ρ(y))
s| |Ω(y)h(ρ(y))|

ρ(y)α dy

≤

∫ t

t/2

|h(r)| 1rdr‖Ω‖L1(Sn−1)ϕ(t)
s|Ls(ξ)|

≤ C‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)ϕ(t)
s|Ls(ξ)|,

which combining with (2.2) implies that

∣∣σ̂s
h,t(ξ)− σ̂s−1

h,t (ξ)
∣∣ ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)(ϕ(t)

s|Ls(ξ)|)
1/(2sγ′q′).

Similarly,

∣∣|̂σs
h,t|(ξ)− |̂σs−1

h,t |(ξ)
∣∣ ≤ C‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)(ϕ(t)

s|Ls(ξ)|)
1/(2sγ′q′).

Thus (2.3) holds. On the other hand, by a change of variable and Hölder’s
inequality, invoking Lemma 2.1 we have

|σ̂s
h,t(ξ)|

≤ C

∫ t

t/2

∣∣∣
∫

Sn−1

exp(−2πiξ · Φs(y))Ω(y
′)dσ(y′)

∣∣∣|h(r)| 1rdr

≤ C‖h‖∆γ(R+)‖Ω‖
1−2/γ′

L1(Sn−1)

( ∫ t

t/2

∣∣∣
∫

Sn−1

Ω(y′) exp(−2πiξ · Φs(y))dσ(y
′)
∣∣∣
2
1
rdr

)1/r′

≤ C‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)(ϕ(t)
s|Ls(ξ)|)

−ǫ/γ′
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for any 0 < ǫ < min{1/q′, 1/s}. Taking ǫ = 1/(2q′s), we have

|σ̂s
h,t(ξ)| ≤ C‖Ω‖Lq(Sn−1)‖h‖∆γ(R+)(ϕ(t)

s|Ls(ξ)|)
−1/(2sq′γ′).

Similarly,

||̂σs
h,t|(ξ)| ≤ C‖Ω‖Lq(Sn−1)‖h‖∆γ(R+)(ϕ(t)

s|Ls(ξ)|)
−1/(2sq′γ′).

This completes the proof of Lemma 2.2. �

Motivated by the idea in [14], we have the following result, which will play
a key role in the estimates on some vector-valued norm inequalities.

Lemma 2.3. Let Ω, h, ϕ be as in Lemma 2.2. Then for 0 ≤ s ≤ N and any

1 < p <∞, there exists a constant C > 0 such that

(2.5) ‖σ∗
h,s(f)‖Lp(Rn) ≤ C(q− 1)−1(γ − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)‖f‖Lp(Rn);

(2.6)
‖Mh,q,γ,s(f)‖Lp(Rn) ≤ C(q − 1)−1(γ − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)‖f‖Lp(Rn).

The constant C = Cn,p,ϕ is independent of Ω, h, q, γ and the coefficients of Pj

for 1 ≤ j ≤ n.

Proof. For convenience, we set A = (q − 1)−1(γ − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Sn−1).
It is easy to verify that
(2.7)

σ∗
h,s(f)(x) ≤ sup

k∈Z

1

2q′γ′(k+1)

∫

2q′γ′k<ρ(y)≤2q′γ′(k+1)

|f(x− Φs(y))|
|Ω(y)h(ρ(y)|

ρ(y)α−1 dy.

For 0 ≤ s ≤ N , we define the family of measures {µk,s} and maximal operators
µ∗
s on Rn by
∫

Rn

f(x)dµk,s(x) =
1

2q′γ′(k+1)

∫

2q′γ′k<ρ(y)≤2q′γ′(k+1)

Ω(y)h(ρ(y))
ρ(y)α−1 f(Φs(y))du,

µ∗
s(f)(x) = sup

k∈Z

||µk,s| ∗ f(x)|,

where |µk,s| is defined in the same way as µk,s, but with Ω replaced by |Ω| and
h replaced by |h|. Thus, we get form (2.7) that

(2.8) σ∗
h,s(f)(x) ≤ µ∗

s(|f |)(x).

Therefore, to prove (2.5), it suffices to prove that

(2.9) ‖µ∗
s(f)‖Lp(Rn) ≤ CpA‖f‖Lp(Rn), 1 < p <∞.

Then by the proof of Lemma 2.2 and a straightforward calculation we get for
1 ≤ s ≤ N ,

(2.10) ||̂µk,s|(ξ)| ≤ CA(min{1, (ϕ(2q
′γ′k)s|Ls(ξ)|)

−1})1/(2sq
′γ′),

(2.11)
∣∣|̂µk,s|(ξ)− ̂|µk,s−1|(ξ)

∣∣ ≤ CA(ϕ(2q
′γ′k)s|Ls(ξ)|)

1/(2sq′γ′).

In what follows, we prove (2.9) by induction on s.
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Case 1. Without loss of generality, we may assume that f is nonnegative
and ‖f‖Lp(Rn) <∞, It is easy to check that µ∗

0(f)(x) ≤ CAf(x), which implies
(2.9) for s = 0.

Case 2. Suppose that (2.9) holds for s = m − 1, m ∈ {1, . . . , N}. We shall
prove (2.9) for s = m. Let ψ ∈ C∞

0 (R) be supported in {|t| ≤ 1} and ψ(t) ≡ 1
for |t| ≤ 1/2. Define the Borel measures {ωk,s}k∈Z on Rn by

(2.12) ω̂k,m(ξ) = |̂µk,m|(ξ)− ψ(ϕ(2q
′γ′k)m|Rmπ

n
λm
Qm(ξ)|) ̂|µk,m−1|(ξ)

for ξ ∈ Rn, where Rm, π
n
λm
, Qm are as in (2.1). It follows from (2.1) and

(2.10)-(2.11) that
(2.13)

|ω̂k,m(ξ)| ≤ CA(min{1, ϕ(2q
′γ′k)m|Lm(ξ)|, (ϕ(2q

′γ′k)m|Lm(ξ)|)−1})1/(2mq′γ′).

In addition, by (2.13) and a well-known result on maximal functions (see [16]),
we have

(2.14) ‖µ∗
m(f)‖Lp(Rn) ≤ ‖Gm(f)‖Lp(Rn) + C‖µ∗

m−1(f)‖Lp(Rn), 1 < p <∞,

(2.15) ‖ω∗
m(f)‖Lp(Rn) ≤ ‖Gm(f)‖Lp(Rn) + C‖µ⋆

m−1(f)‖Lp(Rn), 1 < p <∞,

where

ω∗
m(f) = sup

k∈Z

||ωk,m| ∗ f | and Gm(f) =
(∑

k∈Z

|ωk,m ∗ f |2
)1/2

.

By our assumption we have

(2.16) ‖µ∗
m−1(f)‖Lp(Rn) ≤ CpA‖f‖Lp(Rn), 1 < p <∞,

where Cp is independent of q, γ and the coefficients of Pj for all 1 ≤ j ≤ n. It
remains to prove that

(2.17) ‖Gm(f)‖Lp(Rn) ≤ CpA‖f‖Lp(Rn), 1 < p <∞,

where Cp is as above. By a well-known property of Rademacher’s functions,
(2.17) follows from

(2.18) ‖Vm
ǫ (f)‖Lp(Rn) ≤ Cp,ϕA‖f‖Lp(Rn), 1 < p <∞,

where V m
ǫ (f) =

∑
k∈Z

ǫkωk,m ∗ f with ǫ = {ǫk}, ǫk = 1 or − 1 and Cp,ϕ is
independent of q, γ and the coefficients of {Pj} for all 1 ≤ j ≤ n. Below we
prove (2.18). Choose a sequence of nonnegative functions {Ψk}k∈Z in C∞

0 (R)
such that

supp(Ψk) ⊂ [ϕ(2q
′γ′(k+1))−m, ϕ(2q

′γ′(k−1))−m],
∑

k∈Z

Ψ2
k(t) = 1,

∣∣(d/dt)jΨk(t)
∣∣ ≤ Cj |t|

−j (j = 1, 2, . . .), ∀ t > 0, j ∈ N,

where Cj are independent of q, γ and k. Define the Fourier multiplier operator
Sj by

Ŝjf(ξ) = Ψj(|Rmπ
n
λm
Qm(ξ)|)f̂(ξ) for j ∈ Z.
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Then

(2.19)

V m
ǫ (f) =

∑

k∈Z

ǫkωk,m ∗
∑

j∈Z

Sj+kSj+kf

=
∑

j∈Z

∑

k∈Z

ǫkSj+k(ωk,m ∗ Sj+kf) :=
∑

j∈Z

V m
j (f).

By the Littlewood-Paley theory, we have

(2.20) ‖Vm
j (f)‖Lp(Rn) ≤ Cp

∥∥∥
(∑

k∈Z

|ωk,m ∗ Sj+kf |
2
)1/2∥∥∥

Lp(Rn)
, 1 < p <∞.

This combining with Plancherel’s theorem yields

‖V m
j (f)‖2(Rn) ≤ C

∥∥∥
(∑

k∈Z

|ωk,m ∗ Sj+kf |
2
)1/2∥∥∥

2

L2(Rn)

≤ C
∑

k∈Z

∫

Dj+k

|ω̂k,m(ξ)|2|f̂(ξ)|2dξ,

where

Dk = {ξ ∈ Rn : ϕ(2q
′γ′(k+1))−m ≤ |Rmπ

n
λm
Qm(ξ)| ≤ ϕ(2q

′γ′(k−1))−m}.

We get from (2.1), (2.13) and Remark 1 that

(2.21) ‖Vm
j (f)‖L2(Rn) ≤ CA(B(2−j)/2

ϕ χ{j≥2} +B(j+1)/2
ϕ χ{j<2})‖f‖L2(Rn).

This together with (2.19) implies

‖Vm
ǫ (f)‖L2(Rn) ≤ CA‖f‖L2(Rn).

Thus,
‖Gm(f)‖L2(Rn) ≤ CA‖f‖L2(Rn),

which combining the Littlewood-Paley theory, (2.13), (2.15)-(2.16) with the
proof of Lemma in [14, p. 544] implies that

(2.22) ‖Vm
j (f)‖Lp(Rn) ≤ CpA‖f‖Lp(Rn), p = 4 or p = 4/3.

Interpolating between (2.21) and (2.22) and combining with (2.19), we get

‖Vm
ǫ (f)‖Lp(Rn) ≤ CA‖f‖Lp(Rn), 4/3 < p < 4,

which leads to

(2.23) ‖Gm(f)‖Lp(Rn) ≤ CA‖f‖Lp(Rn), 4/3 < p < 4.

Reasoning as above, (2.13), (2.15)-(2.16), (2.23), the proof of Lemma in [14,
p.544], the Littlewood-Paley theory and interpolation imply

‖Vm
ǫ (f)‖Lp(Rn) ≤ CA‖f‖Lp(Rn), 8/7 < p < 8.

By using this argument repeatedly, we can obtain ultimately that

‖V m
ǫ (f)‖Lp(Rn) ≤ CA‖f‖Lp(Rn), 1 < p <∞.

This proves (2.18) and completes the proof of (2.5).
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Below we prove (2.6). It suffices to prove that

(2.24) ‖Mh,q,γ,s(|f |)‖Lp(Rn) ≤ CpA‖f‖Lp(Rn)

for all 0 ≤ s ≤ N and 1 < p < ∞, Cp is independent of Ω, h, q, γ and the
coefficients of Pj for all 1 ≤ j ≤ n. We shall prove (2.24) by induction on s.
When s = 0, it is easy to see that

Mh,q,γ,s(|f |)(x) ≤ CA|f(x)|,

which implies (2.24) for s = 0. Assume that (2.24) holds for s = m − 1,m ∈
{1, . . . , N}, we will prove that (2.24) holds for s = m. Let ψ ∈ C∞

0 (R) be as
in (2.12). Define the family of measures {λk,m}k∈Z by

λ̂k,m(ξ) =

∫ 2q
′γ′(k+1)

2q′γ′k

|̂σm
h,t|(ξ)

1
t dt− ψ(ϕ(2q

′γ′k)m|Rmπ
n
λm
Qm(ξ)|)(2.25)

×

∫ 2q
′γ′(k+1)

2q′γ′k

̂|σm−1
h,t |(ξ)1t dt.

By Lemma 2.2 and (2.1), one can easily check that
(2.26)

|λ̂k,m(ξ)| ≤ CA(min{1, ϕ(2q
′γ′k)m|Lm(ξ)|, (ϕ(2q

′γ′k)m|Lm(ξ)|)−1})1/(2mq′γ′).

By the definition of λk,m and a well known result on maximal function (see
[16]), we have

(2.27)
‖Mh,q,γ,m(|f |)‖Lp(Rn)

≤ ‖gm(|f |)‖Lp(Rn) + C‖Mh,q,γ,m−1(|f |)‖Lp(Rn), 1 < p <∞,

(2.28)
‖λ∗m(|f |)‖Lp(Rn)

≤ ‖gm(|f |)‖Lp(Rn) + C‖Mh,q,γ,m−1(|f |)‖Lp(Rn), 1 < p <∞,

where

gm(f) =
(∑

k∈Z

|λk,m ∗ f |2
)1/2

and λ∗m(f) = sup
k∈Z

||λk,m| ∗ f |.

From our assumption, (2.26)-(2.28) and the similar arguments as in getting
(2.5), we get (2.24) for s = m. Thus (2.24) holds. Lemma 2.3 is proved. �

Lemma 2.4. Let h, Ω, ϕ be as in Lemma 2.2. Then for 1 ≤ s ≤ N and any

1 < p <∞, there exists a constant C > 0 such that

(2.29)
∥∥∥
(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|σs
h,t ∗ gk|

2 1
t dt

)1/2∥∥∥
Lp(Rn)

≤ C(q−1)−1/2(γ−1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)

∥∥∥
(∑

k∈Z

|gk|
2
)1/2∥∥∥

Lp(Rn)
, 2 ≤ p <∞;
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(2.30)
∥∥∥
(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|σs
h,t ∗ gk|

2 1
t dt

)1/2∥∥∥
Lp(Rn)

≤ C(q−1)−1(γ−1)−1‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)

∥∥∥
(∑

k∈Z

|gk|
2
)1/2∥∥∥

Lp(Rn)
, 1 < p < 2.

The constant C = Cn,p,ϕ is independent of Ω, h, q, γ and the coefficients of

{Pj} for all 1 ≤ j ≤ n.

Proof. We shall use the method in [2]. First we prove (2.29). For fixed 2 ≤

p < ∞, by duality, there exists a nonnegative function f in L(p/2)′(Rn) with
‖f‖L(p/2)′(Rn) ≤ 1 such that

(2.31)

∥∥∥
(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|σs
h,t ∗ gk|

2 1
t dt

)1/2∥∥∥
2

Lp(Rn)

=

∫

Rn

∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|σs
h,t ∗ gk|

2 1
t dtf(x)dx.

By a change of variable and Hölder’s inequality, we obtain

|σs
h,t ∗ gk(x)|

2(2.32)

≤
(1
t

∫

t/2<ρ(y)≤t

|gk(x− Φs(y))|
|h(ρ(y))Ω(y)|

ρ(y)α−1 dy
)2

≤
( ∫ t

t/2

∫

Sn−1

|gk(x− Φs(Ary
′))||Ω(y′)|J(y′)dσ(y′)|h(r)| 1rdr

)2

≤ C‖h‖γ∆γ(R+)‖Ω‖Lq(Sn−1)

×
( ∫ t

t/2

∫

Sn−1

|gk(x− Φs(Ary
′))|2|Ω(y′)|J(y′)dσ(y′)|h(r)|2−γ 1

rdr
)
.

Thus by (2.31)-(2.32) and Hölder’s inequality, one can check that
(2.33)

∥∥∥
(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|σs
h,t ∗ gk|

2 1
t dt

)1/2∥∥∥
2

Lp(Rn)

≤ C‖h‖γ∆γ(R+)‖Ω‖Lq(Sn−1)

∫

Rn

∑

k∈Z

|gk(x)|
2M̃|h|2−γ ,q,γ,s(f̃)(−x)dx

≤ C‖h‖γ∆γ(R+)‖Ω‖Lq(Sn−1)

∥∥∥
(∑

k∈Z

|gk|
2
)1/2∥∥∥

2

Lp(Rn)
‖M̃|h|2−γ,q,γ,s(f̃)‖L(p/2)′(Rn),

where f̃(x) = f(−x) and M̃|h|2−γ ,q,γ,s(f) denotesM|h|2−γ ,q,γ,s with ̺ = 1. Note

that |h(·)|2−γ ∈ ∆γ/(2−γ)(R+), then by (2.6) we have

‖M̃|h|2−γ ,q,γ,s(|f̃ |)‖L(p/2)′ (Rn)
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≤ C(q − 1)−1(γ − 1)−1‖|h|2−γ‖∆γ/(2−γ)(R+)‖Ω‖Lq(Sn−1)‖f‖L(p/2)′(Rn)

≤ C(q − 1)−1(γ − 1)−1‖h‖2−γ
∆γ(R+)‖Ω‖Lq(Sn−1),

which combining with (2.33) implies (2.29). Next, we prove (2.30). Let 1 <
p < 2. By duality, there exist functions {fk(x, t)} define on Rn × R+ with
‖{fk(·, ·)}‖Lp′(Rn,ℓ2(L2([2q′γ′k,2q′γ′(k+1)],dt/t))) ≤ 1 such that

∥∥∥
(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|σs
h,t ∗ gk|

2 1
t dt

)1/2∥∥∥
Lp(Rn)

(2.34)

≤

∫

Rn

∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

σs
h,t ∗ gk(x)fk(x, t)

1
t dtdx

≤ C(q − 1)−1/2(γ − 1)−1/2
∥∥∥
(∑

k∈Z

|gk|
2
)1/2∥∥∥

Lp(Rn)
‖(H(f))1/2‖Lp′(Rn),

where

H(f)(x) =
∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|σs
h,t ∗ f̃k(x, t)|

2 1
t dt and f̃k(x, t) = f(−x, t).

Since p′ > 2, there exists a nonnegative function u ∈ L(p′/2)′(Rn) such that

‖H(f)‖Lp′/2(Rn) =
∑

k∈Z

∫

Rn

∫ 2q
′γ′(k+1)

2q′γ′k

|σs
h,t ∗ f̃k(x, t)|

2 1
t dt u(x)dx.

By a similar argument as in (2.32) and (2.5), we have

‖H(f)‖Lp′/2(Rn)

(2.35)

≤ C‖h‖γ∆γ(R+)‖Ω‖Lq(Sn−1)

∫

Rn

σ̃∗
|h|2−γ ,s(ũ)(−x)

(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|f̃k(x, t)|
2 1
t dt

)
dx

≤ C‖h‖γ∆γ(R+)‖Ω‖Lq(Sn−1)

∥∥∥
(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|fk(x, t)|
2 1
t dt

)∥∥∥
Lp′/2(Rn)

‖σ̃∗
|h|2−γ ,s(ũ)‖L(p′/2)′ (Rn)

≤ C(q − 1)−1(γ − 1)−1‖h‖2∆γ(R+)‖Ω‖
2
Lq(Sn−1),

where ũ(x) = u(−x) and σ̃∗
|h|2−γ ,s(ũ) denotes σ∗

|h|2−γ ,s(ũ) with ̺ = 1. (2.30)

follows from (2.34) and (2.35). This completes the proof of Lemma 2.4. �

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We only prove Theorem
1 for the case ϕ ∈ F with satisfying (a), the rest of Theorem 1 can be obtained
similarly. Assume that h ∈ ∆γ(R+) for some γ ∈ (1, 2] and Ω ∈ Lq(Sn−1) for
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some q ∈ (1, 2] with satisfying (1.1)-(1.2). By Minkowski’s inequality, we can
write

M
̺
Ω,h,Φ(f)(x)(3.1)

=
(∫ ∞

0

∣∣∣
0∑

k=−∞

1

t̺

∫

2k−1t<ρ(y)≤2kt

f(x− Φ(y))Ω(y)h(ρ(y))
ρ(y)α−̺ dy

∣∣∣
2
1
t dt

)1/2

≤
0∑

k=−∞

( ∫ ∞

0

∣∣∣ 1
t̺

∫

2k−1t<ρ(y)≤2kt

f(x− Φ(y))Ω(y)h(ρ(y))
ρ(y)α−̺ dy

∣∣∣
2
1
t dt

)1/2

≤ (1− 2−σ)−1
(∫ ∞

0

|σN
h,t ∗ f(x)|

2 1
t dt

)1/2

.

Let ψ be as in (2.12). For 1 ≤ s ≤ N , t ∈ R+ and ξ ∈ Rn, we define the family
of measures {νt,s} by

(3.2)

ν̂t,s(ξ) = σ̂s
h,t(ξ)

∏

s<j≤N

ψ(ϕ(t)j |Rjπ
n
λj
Qj(ξ)|)

− σ̂s−1
h,t (ξ)

∏

s−1<j≤N

ψ(ϕ(t)j |Rjπ
n
λj
Qj(ξ)|).

It is clear that

(3.3) σN
h,t =

N∑

s=1

νt,s.

Here we use the convention Πj∈∅aj = 1. By Lemma 2.1 and (2.1), we get
(3.4)

|ν̂t,s(ξ)|

≤ C‖h‖∆γ(R+)‖Ω‖Lq(Sn−1) min{1, ϕ(t)s|Ls(ξ)|, (ϕ(t)
s|Ls(ξ)|)

−1}1/(2sγ
′q′)

for 1 ≤ s ≤ N . The constant C is independent of Ω, h, q, γ and the coefficients
of Pj for all 1 ≤ j ≤ n. This together with a straightforward calculation yields
that

(3.5)

(∫ 2q
′γ′(k+1)

2q′γ′k

|ν̂t,s(ξ)|
2 1
t dt

)1/2

≤ C(q − 1)−1/2(γ − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)

×min{1, ϕ(2γ
′q′k)s|Ls(ξ)|, (ϕ(2

γ′q′k)s|Ls(ξ)|)
−1}1/(2sγ

′q′),

where C is independent of Ω, h, q, γ and the coefficients of Pj for all 1 ≤ j ≤ n.
It follows from (3.1), (3.3) and Minkowski’s inequality that

(3.6) M
̺
Ω,h,Φ(f)(x) ≤ C

N∑

s=1

(∫ ∞

0

|νt,s ∗ f(x)|
2 1
t dt

)1/2

:= C

N∑

s=1

Ms(f)(x).
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Choose a sequence of nonnegative functions {Ψk}k∈Z in C∞
0 (R) such that

supp(Ψk) ⊂ [ϕ(2q
′γ′(k+1))−s, ϕ(2q

′γ′(k−1))−s],
∑

k∈Z

Ψk(t) = 1,

∣∣(d/dt)jΨk(t)
∣∣ ≤ Cj |t|

−j (j = 1, 2, . . .) for all t > 0 and j ∈ N,

where Cj are independent of q, γ, k. Define the Fourier multiplier operator Γj

by

(3.7) Γ̂j(f)(ξ) = Ψj(|Rsπ
n
λs
Qs(ξ)|)f̂ (ξ) for j ∈ Z.

Then we have

(3.8) Ms(f)(x) ≤
∑

i∈Z

Ms,i(f)(x),

where

Ms,i(f)(x) =
(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|νt,s ∗ Γi+kf(x)|
2 1
t dt

)1/2

.

Below we estimate the Lp estimates for Ms,i. By Lemma 2.4 and the definition
of νt,s, we have for 1 ≤ s ≤ N , there exists a positive constant C = Cn,p,ϕ,
which is independent of Ω, h, q, γ such that
(3.9)

∥∥∥
(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|νt,s ∗ gk|
2 1
t dt

)1/2∥∥∥
Lp(Rn)

≤ C(q − 1)−1/2(γ − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)

∥∥∥
(∑

k∈Z

|gk|
2
)1/2∥∥∥

Lp(Rn)
, 2 ≤ p <∞;

(3.10)
∥∥∥
(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|νt,s ∗ gk|
2 1
t dt

)1/2∥∥∥
Lp(Rn)

≤ C(q − 1)−1(γ − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)

∥∥∥
(∑

k∈Z

|gk|
2
)1/2∥∥∥

Lp(Rn)
, 1 < p < 2.

By (3.9)-(3.10) and the Littlewood-Paley theory, we have
(3.11)

‖Ms,i(f)‖Lp(Rn)

=
∥∥∥
(∑

k∈Z

∫ 2q
′γ′(k+1)

2q′γ′k

|νt,s ∗ Γi+kf(x)|
2 1
t dt

)1/2

‖Lp(Rn)

≤ C(q − 1)−1/2(γ − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)

∥∥∥
(∑

k∈Z

|Γi+kf |
2
)1/2

‖Lp(Rn)

≤ C(q − 1)−1/2(γ − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)‖f‖Lp(Rn), 2 ≤ p <∞.
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Similarly,

(3.12)
‖Ms,i(f)‖Lp(Rn)

≤ C(q − 1)−1(γ − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)‖f‖Lp(Rn), 1 < p < 2.

On the other hand, by (2.1), (3.5), Remark 1 and Plancherel’s theorem, we
have

(3.13)

‖Ms,i(f)‖
2
L2(Rn)

=
∑

k∈Z

∫

Rn

|Ψi+k(|Rsπ
n
λs
Qs(ξ)|)|

2|f̂(ξ)|2
( ∫ 2q

′γ′(k+1)

2q′γ′k

|ν̂t,s(ξ)|
2 1
t dt

)
dξ

≤
∑

k∈Z

∫

Ei+k

(∫ 2q
′γ′(k+1)

2q′γ′k

|ν̂t,s(ξ)|
2 1
t dt

)
|f̂(ξ)|2dξ

≤ C(q − 1)−1(γ − 1)−1‖h‖2∆γ(R+)‖Ω‖
2
Lq(Sn−1)D

2
i ‖f‖

2
L2(Rn),

where Di = B
(2−i)/2
ϕ χ{i≥2} +B

i/2
ϕ χ{i<2} and

Ei+k = {ξ ∈ Rn : ϕ(2γ
′q′(i+k+1))−s ≤ |Rsπ

n
λs
Qs(ξ)| ≤ ϕ(2γ

′q′(i+k−1))−s}.

Thus

(3.14)
‖Ms,i(f)‖L2(Rn)

≤ C(q − 1)−1/2(γ − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)Di‖f‖L2(Rn).

By interpolation between (3.11) and (3.14) leads to
(3.15)

‖Ms,i(f)‖Lp(Rn)

≤ C(q−1)−1/2(γ−1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)D
αp

i ‖f‖Lp(Rn), 2 ≤ p <∞.

The constant αp depends only on p. It follows from (3.8) and (3.15) that
(3.16)

‖Ms(f)‖Lp(Rn)

≤ C(q − 1)−1/2(γ − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)‖f‖Lp(Rn), 2 ≤ p <∞.

Similarly, by (3.8) and interpolation between (3.12) and (3.14), we have

(3.17)
‖Ms(f)‖Lp(Rn)

≤ C(q − 1)−1(γ − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)‖f‖Lp(Rn), 1 < p < 2.

Using (3.6), (3.16)-(3.17), we get
(3.18)

‖M ̺
Ω,h,Φ(f)‖Lp(Rn)

≤ C(q − 1)−1/2(γ − 1)−1/2‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)‖f‖Lp(Rn), 2 ≤ p <∞,

(3.19)
‖M ̺

Ω,h,Φ(f)‖Lp(Rn)

≤ C(q − 1)−1(γ − 1)−1‖h‖∆γ(R+)‖Ω‖Lq(Sn−1)‖f‖Lp(Rn), 1 < p < 2.
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The constant C = C̺,n,p,N,ϕ is independent of Ω, h, q, γ. Finally, Theorem
1 follows directly from (3.18)-(3.19) and an extrapolation argument as in the
proof of [22, Theorem 1.2].

Acknowledgement. The authors would like to express their deep gratitude
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