DOI QR코드

DOI QR Code

Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents

세립분 함유량에 따른 동결 사질토의 응력-변형률-강도 특성

  • Chae, Deokho (Department of Civil & Environmental Engineering, Dankook University) ;
  • Hwang, Bumsik (Department of Civil & Environmental Engineering, Dankook University) ;
  • Cho, Wanjei (Department of Civil & Environmental Engineering, Dankook University)
  • Received : 2015.03.23
  • Accepted : 2015.05.15
  • Published : 2015.06.01

Abstract

Recently, the participation on the development of the natural gas pipeline in Russia as well as the recent construction of the second Korean Antarctic research station, the Jangbogo station provide the research interests on the behavior of the permafrost ground. To investigate the effect of fines on the mechanical responses of frozen sands, unconfined compression tests were performed on the frozen sands with 0, 5, 10 and 15% of fine contents at -5, -10 and $-15^{\circ}C$. The poorly graded (SP) Joomunjin sand and kaolinite, silt with low plasticity (ML) were used for the preparation of the frozen soil specimens. The mechanical responses of the tested soils were investigated via unconfined compression tests in the temperature controlled laboratory and analyzed in terms of peak unconfined compressive strength and secant modulus at 50% of the peak strength. As the fine contents increase, the unfrozen water contents increase and thus the strength and stiffness of frozen soils decrease. The increment of the stiffness and strength due to the temperature decrease vary with the fine contents.

최근 우리나라는 러시아 극동 지역의 천연파이프 건설과 제2남극기지인 장보고 기지건설이 이루어지면서 영구동토지반에서의 구조물 건설에 대한 관심이 증대되고 있다. 세립분 함유량이 동결된 사질토의 역학적 거동에 미치는 영향을 파악하기 위하여 온도 -5, -10, $-15^{\circ}C$의 조건에서 세립분 함유량 0, 5, 10, 15%의 시료에 대해 일축압축시험을 수행하였다. 동결 사질토를 성형하기 위해 입도가 균일한(SP) 주문진 표준사와 소성성이 낮은 실트(ML)인 카올리나이트를 사용하였다. 성형된 동결 사질토를 사용하여 온도를 제어할 수 있는 냉동 체임버에서 일축압축실험을 수행하였고 강도 및 강성특성을 파악하기 위해 최대 일축압축강도와 변형계수를 분석하였다. 그 결과 동결 사질토의 강도 및 강성은 세립분 함유량이 증가할수록 감소하는 경향을 보이고 온도가 낮아짐에 따라 증가하는 경향을 보였다.

Keywords

References

  1. Anderson, D. M. and Morgenstern, N. R. (1973), Physics, chemistry and mechanics of frozen ground, National Academy of Sciences, pp. 257-288.
  2. Andersland, O. B. and Ladanyi, B. (2004), Frozen ground engineering second edition, John Wiley & Sons, New York, pp. 20-55.
  3. ASTM (1995), Laboratory determination of creep properties of frozen soil samples by uniaxial compression (D 5520), In 1995 Annual Book of ASTM Standards, sec. 4, Vol. 04.08. ASTM, Philadelphia: ASTM, pp. 1-7.
  4. Bourbonnais, J. and Ladanyi, B. (1985), The mechanical behavior of frozen sand down to cryogenic temperatures, Proceedings, 4th International Symposium of Ground Freezing, Sapporo, Japan, pp. 235-244.
  5. Bragg, R. A. and Andersland, O. B. (1982), Strain rate, temperature and sample size effects on compression and tensile properties of frozen sand, Developments in Geotechnical Engineering, Vol. 28, pp. 35-46. https://doi.org/10.1016/B978-0-444-42010-7.50008-6
  6. Chae, D. H., Oh, M. Y., Lee, H. Y. and Cho, W. J. (2013), Loading rate effects on the stress-strain responses of frozen soils, International Society of Offshore and Polar Engineering (ISOPE), Anchorage, pp. 501-506.
  7. Dillon, H. B. and Andersland, O. B. (1966), Predicting unfrozen water contents in frozen soils, Journal of Canadian Geotechnical, Vol. 3, No. 2, pp. 53-60. https://doi.org/10.1139/t66-007
  8. Freitag, D. R. and McFadden, T. (1997), Introduction to cold regions engineering, New York: ASCE Press, pp. 291-301.
  9. Haynes, F. D. and Karalius, J. A. (1977), Effect of temperature in the strength of frozen silt, U.S. Army Cold Regions Research and Engineering Laboratory Research Report 350, pp. 6-25.
  10. Hivon, E. G. and Sego, D. C. (1995), Strength of frozen saline soils, Canadian Geotechnical Journal, Vol. 32, No. 2, pp. 336-354. https://doi.org/10.1139/t95-034
  11. Ting, J. M. (1983), Tertiary creep model for frozen sands, Journal of Geotechnical Engineering, Vol. 109, No. 7, pp. 932-944. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:7(932)
  12. Uhlmann, D. R. and Jackson, K. A. (1978), Frost heave in soils, Physics of Snow and Ice, Vol. 1, Part 2, pp. 1361-1373.
  13. Wolfe, L. H. and Thieme, J. O. (1964), Physical and thermal properties of frozen soil and ice, Society of Petroleum Engineering Journal, Vol. 4, No. 01, pp. 67-72. https://doi.org/10.2118/675-PA

Cited by

  1. 세립분 함량을 고려한 동결 사질토의 장기변형 예측 모델 평가 vol.37, pp.1, 2017, https://doi.org/10.12652/ksce.2017.37.1.0093