참고문헌
- Apostolou, S., Klein, J.O., Mitsuuchi, Y., Shetler, J.N., Poulikakos, P.I., Jhanwar, S.C., Kruger, W.D., and Testa, J.R. (2004). Growth inhibition and induction of apoptosis in mesothelioma cells by selenium and dependence on selenoprotein SEP15 genotype. Oncogene 23, 5032-5040. https://doi.org/10.1038/sj.onc.1207683
- Bang, J., Jang, M., Huh, J.H., Na, J., Shim, M., Carlson, B.A., Tobe, R., Tsuji, P.A., Gladyshev, V.N., Hatfield, D.L., et al. (2014, in press). Deficiency of the 15-kDa selenoprotein led to cytoskeleton remodeling and non-apoptotic membrane blebbing through a RhoA/ROCK pathway. Biochem. Biophys. Res. Commun. doi:10.1016/j.bbrc.2014.12.059.
- Boosalis, M.G. (2008). The role of selenium in chronic disease. Nutr. Clin. Pract. 23, 152-160. https://doi.org/10.1177/0884533608314532
- Coqueret, O. (2003). New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol.13, 65-70. https://doi.org/10.1016/S0962-8924(02)00043-0
- Davis, C.D., Tsuji, P.A., and Milner, J.A. (2012). Selenoproteins and cancer prevention. Annu. Rev. Nutr. 32, 73-95. https://doi.org/10.1146/annurev-nutr-071811-150740
- Ferguson, A.D., Labunskyy, V.M., Fomenko, D.E., Arac, D., Chelliah, Y., Amezcua, C.A., Rizo, J., Gladyshev, V.N., and Deisenhofer, J. (2006). NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J. Biol. Chem. 281, 3536-3543. https://doi.org/10.1074/jbc.M511386200
- Flohe, L. (2007). Selenium in mammalian spermiogenesis. Biol. Chem. 388, 987-995.
- Gladyshev, V.N., Jeang, K.T., Wootton, J.C., and Hatfield, D.L. (1998). A new human selenium-containing protein. Purification, characterization, and cDNA sequence. J. Biol. Chem. 273, 8910-8915. https://doi.org/10.1074/jbc.273.15.8910
- Hatfield, D.L., and Gladyshev, V.N. (2002). How selenium has altered our understanding of the genetic code. Mol. Cell. Biol. 22, 3565-3576. https://doi.org/10.1128/MCB.22.11.3565-3576.2002
- Irons, R., Tsuji, P.A., Carlson, B.A., Ouyang, P., Yoo, M.H., Xu, X.M., Hatfield, D.L., Gladyshev, V.N., and Davis, C.D. (2010). Deficiency in the 15-kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells. Cancer Prev. Res. (Phila) 3, 630-639. https://doi.org/10.1158/1940-6207.CAPR-10-0003
- Jablonska, E., Gromadzinska, J., Sobala, W., Reszka, E., and Wasowicz, W. (2008). Lung cancer risk associated with selenium status is modified in smoking individuals by Sep15 polymorphism. Eur. J. Nutr. 47, 47-54. https://doi.org/10.1007/s00394-008-0696-9
- Kim, J.Y., Lee, K.H., Shim, M.S., Shin, H., Xu, X.M., Carlson, B.A., Hatfield, D.L., and Lee, B.J. (2010). Human selenophosphate synthetase 1 has five splice variants with unique interactions, subcellular localizations and expression patterns. Biochem. Biophys. Res. Commun. 397, 53-58. https://doi.org/10.1016/j.bbrc.2010.05.055
- Kim, M., Chen, Z., Shim, M.S., Lee, M.S., Kim, J.E., Kwon, Y.E., Yoo, T.J., Kim, J.Y., Bang, J.Y., Carlson, B.A., et al. (2013). SUMO modification of NZFP mediates transcriptional repression through TBP binding. Mol. Cells 35, 70-78. https://doi.org/10.1007/s10059-013-2281-1
- Korotkov, K.V., Novoselov, S.V., Hatfield, D.L., and Gladyshev, V.N. (2002). Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Mol. Cell. Biol. 22, 1402-1411. https://doi.org/10.1128/MCB.22.5.1402-1411.2002
- Kumaraswamy, E., Malykh, A., Korotkov, K.V., Kozyavkin, S., Hu, Y., Kwon, S.Y., Moustafa, M.E., Carlson, B.A., Berry, M.J., Lee, B.J., et al. (2000). Structure-expression relationships of the 15- kDa selenoprotein gene. Possible role of the protein in cancer etiology. J. Biol. Chem. 275, 35540-35547. https://doi.org/10.1074/jbc.M004014200
- Labunskyy, V.M., Hatfield, D.L., and Gladyshev, V.N. (2007). The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum. IUBMB Life 59, 1-5. https://doi.org/10.1080/15216540601126694
- Labunskyy, V.M., Yoo, M.H., Hatfield, D.L., and Gladyshev, V.N. (2009). Sep15, a thioredoxin-like selenoprotein, is involved in the unfolded protein response and differentially regulated by adaptive and acute ER stresses. Biochemistry 48, 8458-8465. https://doi.org/10.1021/bi900717p
- Low, S.C., and Berry, M.J. (1996). Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem. Sci. 21, 203-208. https://doi.org/10.1016/S0968-0004(96)80016-8
- Nasr, M.A., Hu, Y.J., and Diamond, A.M. (2003). Allelic loss at the Sep15 locus in breast cancer. Cancer Therapy 1, 293-298.
-
Niculescu III, A.B., Chen, X., Smeets, M., Hengst, L., Prives, C., and Reed, S.I. (1998). Effects of
$p21^{Cip1/Waf1}$ at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol. Cell. Biol. 18, 629-643. https://doi.org/10.1128/MCB.18.1.629 - Papp, L.V., Lu, J., Holmgren, A., and Khanna, K.K. (2007). From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox Signal. 9, 775-806. https://doi.org/10.1089/ars.2007.1528
- Park, J., Kim, J.S., Jung, K.C., Lee, H.J., Kim, J.I., Kim, J., Lee, J.Y., Park, J.B., and Choi, S.Y. (2003). Exoenzyme Tat-C3 inhibits association of zymosan particles, phagocytosis, adhesion, and complement binding in macrophage cells. Mol. Cells 16, 216-223.
- Pasapera, A.M., Schneider, I.C., Rericha, E., Schlaepfer, D.D., and Waterman, C.M. (2010). Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877-890. https://doi.org/10.1083/jcb.200906012
- Reed, S.I. (2002). Cell cycling? Check your brakes. Nat. Cell Biol. 4, E199-E201. https://doi.org/10.1038/ncb0802-e199
- Roman, M., Jitaru, P., and Barbante, C. (2014). Selenium biochemistry and its role for human health. Metallomics 6, 25-54. https://doi.org/10.1039/C3MT00185G
- Sherr, C.J., and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501-1512. https://doi.org/10.1101/gad.13.12.1501
- Shim, M.S., Kim, J.Y., Jung, H.K., Lee, K.H., Xu, X.M., Carlson, B.A., Kim, K.W., Kim, I.Y., Hatfield, D.L., and Lee, B.J. (2009). Elevation of glutamine level by selenophosphate synthetase 1 knockdown induces megamitochondrial formation in Drosophila cells. J. Biol. Chem. 284, 32881-32894. https://doi.org/10.1074/jbc.M109.026492
- Sigoillot, F.D., Lyman, S., Huckins, J.F., Adamson, B., Chung, E., Quattrochi, B., and King, R.W. (2012). A bioinformatics method identifies prominent off-targeted transcript in RNAi screens. Nat. Methods 9, 363-366. https://doi.org/10.1038/nmeth.1898
- Sutherland, A., Kim, D.H., Relton, C., Ahn, Y.O., and Hesketh, J. (2010). Polymorphisms in the selenoprotein S and 15-kDa selenoprotein genes are associated with altered susceptibility to colorectal cancer. Genes Nutr. 5, 215-223. https://doi.org/10.1007/s12263-010-0176-8
- Tsuji, P.A., Carlson, B.A., Naranjo-Suarez, S., Yoo, M.H., Xu, X.M., Fomenko, D.E., Gladyshev, V.N., Hatfield, D.L., and Davis, C.D. (2012). Knockout of the 15 kDa selenoprotein protects against chemically-induced aberrant crypt formation in mice. PLoS One 7, e50574. https://doi.org/10.1371/journal.pone.0050574
- Tsuji, P.A., Naranjo-Suarez, S., Carlson, B.A., Tobe, R., Yoo, M.H., and Davis, C.D. (2011). Deficiency in the 15 kDa selenoprotein inhibits human colon cancer cell growth. Nutrients 3, 805-817. https://doi.org/10.3390/nu3090805
피인용 문헌
- Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury vol.17, pp.6, 2016, https://doi.org/10.1631/jzus.B1500261
- The interaction of selenoprotein F (SELENOF) with retinol dehydrogenase 11 (RDH11) implied a role of SELENOF in vitamin A metabolism vol.15, pp.1, 2018, https://doi.org/10.1186/s12986-017-0235-x
- Role of Selenoprotein F in Protein Folding and Secretion: Potential Involvement in Human Disease vol.10, pp.11, 2018, https://doi.org/10.3390/nu10111619
- Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals vol.473, pp.14, 2015, https://doi.org/10.1042/bcj20160393
- Modulation of ERQC and ERAD: A Broad-Spectrum Spanner in the Works of Cancer Cells? vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/8384913
- Selenoproteins of the Human Prostate: Unusual Properties and Role in Cancer Etiology vol.192, pp.1, 2015, https://doi.org/10.1007/s12011-019-01809-0
- Selenoproteins and their emerging roles in signaling pathways vol.11, pp.2, 2015, https://doi.org/10.15421/022028
- Constitutive Oxidative Stress by SEPHS1 Deficiency Induces Endothelial Cell Dysfunction vol.22, pp.21, 2021, https://doi.org/10.3390/ijms222111646