DOI QR코드

DOI QR Code

Nrf2 Expression and Apoptosis in Quercetin-treated Malignant Mesothelioma Cells

  • Lee, Yoon-Jin (Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute) ;
  • Lee, David M. (Cell Biology and Genetics in Biological Sciences, College of Computer, Mathematical, and Natural Sciences, University of Maryland) ;
  • Lee, Sang-Han (Soonchunhyung Environmental Health Center for Asbestos, Soonchunhyang University Cheonan Hospital)
  • Received : 2014.10.06
  • Accepted : 2015.02.23
  • Published : 2015.05.31

Abstract

NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor, has recently received a great deal of attention as an important molecule that enhances antioxidative defenses and induces resistance to chemotherapy or radiotherapy. In this study, we investigated the apoptosis-inducing and Nrf2- upregulating effects of quercetin on malignant mesothelioma (MM) MSTO-211H and H2452 cells. Quercetin treatment inhibited cell growth and led to upregulation of Nrf2 at both the mRNA and protein levels without altering the ubiquitination and extending the half-life of the Nrf2 protein. Following treatment with quercetin, analyses of the nuclear level of Nrf2, Nrf2 antioxidant response element-binding assay, Nrf2 promoter-luc assay, and RT-PCR toward the Nrf2-regulated gene, heme oxygenase-1, demonstrated that the induced Nrf2 is transcriptionally active. Knockdown of Nrf2 expression with siRNA enhanced cytotoxicity due to the induction of apoptosis, as evidenced by an increase in the level of proapoptotic Bax, a decrease in the level of antiapoptotic Bcl-2 with enhanced cleavage of caspase-3 and PARP proteins, the appearance of a sub-$G_0/G_1$ peak in the flow cytometric assay, and increased percentage of apoptotic propensities in the annexin V binding assay. Effective reversal of apoptosis was observed following pretreatment with the pan-caspase inhibitor Z-VAD. Moreover, Nrf2 knockdown exhibited increased sensitivity to the anticancer drug, cisplatin, presumably by potentiating the oxidative stress induced by cisplatin. Collectively, our data demonstrate the importance of Nrf2 in cytoprotection, survival, and drug resistance with implications for the potential significance of targeting Nrf2 as a promising strategy for overcoming resistance to chemotherapeutics in MM.

Keywords

References

  1. Bao, L.J., Jaramillo, M.C., Zhang, Z.B., Zheng, Y.X., Yao, M., Zhang, D.D., and Yi, X.F. (2014). Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma. Int. J. Clin. Exp. Pathol. 7, 1502-1513.
  2. Borska, S., Chmielewska, M., Wysocka, T., Drag-Zalesinska, M., Zabel, M., and Dziegiel, P. (2012). In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR. Food Chem. Toxicol. 50, 3375-3383. https://doi.org/10.1016/j.fct.2012.06.035
  3. Ceccarelli, J., Delfino, L., Zappia, E., Castellani, P., Borghi, M., and Ferrini, S. (2008). The redox state of the lung cancer microenvironment depends on the levels of thioredoxin expressed by tumor cells and affects tumor progression and response to prooxidants. Int. J. Cancer 123, 1770-1778. https://doi.org/10.1002/ijc.23709
  4. Chung, T.W., Choi, H.J., Kim, S.J., Kwak, C.H., Song, K.H., Jin, U.H., Chang, Y.C., Chang, H.W., Lee, Y.C., Ha, K.T., et al. (2014). The ganglioside GM3 is associated with cisplatininduced apoptosis in human colon cancer cells. PLoS One 9, e92786. https://doi.org/10.1371/journal.pone.0092786
  5. Ferraresi, R., Troiano, L., Roat, E., Lugli, E., Nemes, E., Nasi, M., Pinti, M., Fernandez, M.I., Cooper, E.L., and Cossarizza, A. (2005). Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radic. Res. 39, 1249-1258.
  6. Granado-Serrano, A., Martin, M., Bravo, L., Goya, L., and Ramos, S. (2006). Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-Kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J. Nutr. 136, 2715-2721. https://doi.org/10.1093/jn/136.11.2715
  7. Jiang, T., Chen, N., Zhao, F., Wang, X.J., Kong, B., Zheng, W., and Zhang, D.D. (2010). High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 70, 5486-5496. https://doi.org/10.1158/0008-5472.CAN-10-0713
  8. Jiang, B., Xiao, S., Khan, MA., and Xue, M. (2013). Defective antioxidant systems in cervical cancer. Tumour Biol. 34, 2003-2009. https://doi.org/10.1007/s13277-013-0804-1
  9. Ji, X.J., Chen, S.H., Zhu, L., Pan, H., Zhou, Y., Li, W., You, W.C., Gao, C.C., Zhu, J.H., Jiang, K., et al. (2013). Knockdown of NFE2- related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model. Oncol. Rep. 30, 157-164. https://doi.org/10.3892/or.2013.2476
  10. Khanduja, K.L., Gandhi, R.K., Pathania, V., and Syal, N. (1999). Prevention of N-nitrosodiethylamine-induced lung tumorigenesis by ellagic acid and quercetin in mice. Food Chem. Toxicol. 37, 313-318. https://doi.org/10.1016/S0278-6915(99)00021-6
  11. Kim, S.J., Miyoshi, Y., Taguchi, T., Tamaki, Y., Nakamura, H., Yodoi, J., Kato, K., and Noguchi, S. (2005). High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin. Cancer Res. 11, 8425-8430. https://doi.org/10.1158/1078-0432.CCR-05-0449
  12. Kim, Y.R., Oh, J.E., Kim, M.S., Kang, M.R., Park, S.W., Han, J.Y., Eom, H.S., Yoo, N.J., and Lee, S.H. (2011). Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J. Pathol. 220, 446-451.
  13. Lau, A., Villeneuve, N.F., Sun, Z., Wong, P.K., and Zhang, D.D. (2008). Dual roles of Nrf2 in cancer. Pharmacol. Res. 58, 262-270. https://doi.org/10.1016/j.phrs.2008.09.003
  14. Lee, Y.J., Jeong, H.Y., Kim, Y.B., Lee, Y.J., Won, S.Y., Shim, J.H., Cho, M.K., Nam, H.S., and Lee S.H. (2012). Reactive oxygen species and PI3K/Akt signaling play key roles in the induction of Nrf2-driven heme oxygenase-1 expression in sulforaphanetreated human mesothelioma MSTO-211H cells. Food Chem. Toxicol. 50, 116-123. https://doi.org/10.1016/j.fct.2011.10.035
  15. Lee, H.S., Lee, G.S., Kim, S.H., Kim, H.K., Suk, D.H., and Lee, D.S. (2014). Anti-oxidizing effect of the dichloromethane and hexane fractions from Orostachys japonicus in LPS-stimulated RAW 264.7 cells via upregulation of Nrf2 expression and activation ofMAPK signaling pathway. BMB Rep. 47, 98-103. https://doi.org/10.5483/BMBRep.2014.47.2.088
  16. Li, N., Sun, C., Zhou, B., Xing, H., Ma, D., Chen, G., and Weng, D. (2014). Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS One 9, e100314. https://doi.org/10.1371/journal.pone.0100314
  17. Merikallio, H., Paakko, P., Kinnula, V.L., and Harju, T. (2012). Nuclear factor erythroid-derived 2-like 2 (Nrf2) and DJ1 are prognostic factors in lung cancer. Hum. Pathol. 43, 577-584. https://doi.org/10.1016/j.humpath.2011.05.024
  18. Niture, S.K., and Jaiswal, A.K. (2013). Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance. Free Radic. Biol. Med. 57, 119-131. https://doi.org/10.1016/j.freeradbiomed.2012.12.014
  19. Oberley, T.D., and Oberley, L.W. (1997). Antioxidant enzyme levels in cancer. Histol. Histopathol. 12, 525-535.
  20. Ogretmen, B., Bahadori, H.R., McCauley, M.D., Boylan, A., Green, M.R., and Safam A.R. (1998). Co-ordinated over-expression of the MRP and gamma-glutamylcysteine synthetase genes, but not MDR1, correlates with doxorubicin resistance in human malignant mesothelioma cell lines. Int. J. Cancer 75, 757-761. https://doi.org/10.1002/(SICI)1097-0215(19980302)75:5<757::AID-IJC15>3.0.CO;2-3
  21. Ohta, T., Iijima, K., Miyamoto, M., Nakahara, I., Tanaka, H., Ohtsuji, M., Suzuki, T., Kobayashi, A., Yokota, J., Sakiyama, T., et al. (2008). Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 68, 1303-1309. https://doi.org/10.1158/0008-5472.CAN-07-5003
  22. Qu, L.Y., Gao, P., Wang, H.Y., Wang, X.J., and Tang, X.W. (2010). Nrf2 down-regulated cell line H460-N5 with Keap1 overexpression increased sensitivity to anti-cancer drugs. Zhejiang Da Xue Xue Bao Yi Xue Ban 39, 6-10.
  23. Robaszkiewicz, A., Balcerczyk, A., and Bartosz, G.. (2007). Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol. Int. 31, 1245-1250. https://doi.org/10.1016/j.cellbi.2007.04.009
  24. Samuel, T., Fadlalla, K., Mosley, L., Katkoori, V., Turner, T., and Manne, U. (2012). Dual-mode interaction between quercetin and DNA-damaging drugs in cancer cells. Anticancer Res. 32, 61-71.
  25. Saw, C.L., Guo, Y., Yang, A.Y., Paredes-Gonzalez, X., Ramirez, C., Pung, D., and Kong, A.N. (2014). The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: Involvement of the Nrf2-ARE signaling pathway. Food Chem. Toxicol. 72, 303-311. https://doi.org/10.1016/j.fct.2014.07.038
  26. Sharma, M., Rajappa, M., Kumar, G., and Sharma, A. (2009). Oxidant- antioxidant status in Indian patients with carcinoma of posterior one-third of tongue. Cancer Biomark. 5, 253-260. https://doi.org/10.3233/CBM-2009-0110
  27. Shibata, T., Kokubu, A., Gotoh, M., Ojima, H., Ohta, T., Yamamoto, M., and Hirohashi, S. (2008). Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135, 1358-1368. https://doi.org/10.1053/j.gastro.2008.06.082
  28. Shim, G.S., Manandhar, S., Shin, D.H., Kim, T.H., and Kwak, M.K. (2009). Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic. Biol. Med. 47, 1619-1631. https://doi.org/10.1016/j.freeradbiomed.2009.09.006
  29. Slocum, S.L., and Kensler, T.W. (2011). Nrf2: control of sensitivity to carcinogens. Arch. Toxicol. 85, 273-284. https://doi.org/10.1007/s00204-011-0675-4
  30. Stacy, D.R., Ely, K., Massion, P.P., Yarbrough, W.G., Hallahan, D.E., and Sekhar, K.R. (2006). Increased expression of nuclear factor E2 p45-related factor 2 (NRF2) in head and neck squamous cell carcinomas. Head Neck 28, 813-818. https://doi.org/10.1002/hed.20430
  31. Thrower, J.S., Hoffman, L., Rechsteiner, M., and Pickart, C.M. (2000). Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94-102. https://doi.org/10.1093/emboj/19.1.94
  32. Wakabayashi, N., Dinkova-Kostova, A.T., Holtzclaw, W.D., Kang, M.I., Kobayashi, A., Yamamoto, M., Kensler, T.W., and Talalay P. (2004). Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc. Natl. Acad. Sci. USA. 101, 2040-2045. https://doi.org/10.1073/pnas.0307301101
  33. Wang, X.J., Sun, Z., Villeneuve, N.F., Zhang, S., Zhao, F., Li, Y., Chen, W., Yi, X., Zheng, W., Wondrak, G.T., Wong, P.K., et al. (2008). Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29, 1235-1243. https://doi.org/10.1093/carcin/bgn095
  34. Yang, H., Wang, W., Zhang, Y., Zhao, J., Lin, E., Gao, J., and He, J. (2011). The role of NF-E2-related factor 2 in predicting chemoresistance and prognosis in advanced non-small-cell lung cancer. Clin. Lung Cancer 12, 166-171. https://doi.org/10.1016/j.cllc.2011.03.012
  35. Zhang, P., Singh, A., Yegnasubramanian, S., Esopi, D., Kombairaju, P., Bodas, M., Wu, H., Bova, S.G., and Biswal, S. (2010). Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 9, 336-346. https://doi.org/10.1158/1535-7163.MCT-09-0589
  36. Zhong, Y., Zhang, F., Sun, Z., Zhou, W., Li, Z.Y., You, Q.D., Guo Q.L., and Hu, R. (2012). Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2- mediated cellular defense response. Mol. Carcinog. 52, 824-834.

Cited by

  1. Sulforaphane potentiates growth-inhibiting and apoptosis-promoting activities of cisplatin following oxidative stress and mitochondrial dysfunction in malignant mesothelioma cells vol.12, pp.3, 2016, https://doi.org/10.1007/s13273-016-0034-x
  2. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma vol.94, 2017, https://doi.org/10.1016/j.biopha.2017.07.075
  3. Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants vol.2016, 2016, https://doi.org/10.1155/2016/4251912
  4. Polyphenols from the extract and fraction of T. indica seeds protected HepG2 cells against oxidative stress vol.15, pp.1, 2015, https://doi.org/10.1186/s12906-015-0963-2
  5. Comparative proteomic analysis of malignant pleural mesothelioma: Focusing on the biphasic subtype vol.10, 2016, https://doi.org/10.1016/j.euprot.2016.01.006
  6. Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells vol.13, pp.8, 2016, https://doi.org/10.1021/acs.molpharmaceut.6b00190
  7. Molecular mechanisms of action of quercetin in cancer: recent advances vol.37, pp.10, 2016, https://doi.org/10.1007/s13277-016-5184-x
  8. Dehydrobruceine B enhances the cisplatin-induced cytotoxicity through regulation of the mitochondrial apoptotic pathway in lung cancer A549 cells vol.89, 2017, https://doi.org/10.1016/j.biopha.2017.02.055
  9. Protective role of Nrf2 against mechanical-stretch-induced apoptosis in mouse fibroblasts: a potential therapeutic target of mechanical-trauma-induced stress urinary incontinence vol.29, pp.10, 2018, https://doi.org/10.1007/s00192-017-3545-7
  10. Anticancer potential of quercetin: A comprehensive review pp.0951418X, 2018, https://doi.org/10.1002/ptr.6155
  11. Effects of Pyrene on Human Liver HepG2 Cells: Cytotoxicity, Oxidative Stress, and Transcriptomic Changes in Xenobiotic Metabolizing Enzymes and Inflammatory Markers with Protection Trial Using Lycopen vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/7604851
  12. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential vol.9, pp.5, 2015, https://doi.org/10.3390/biom9050174
  13. Effects of KEAP1 Silencing on the Regulation of NRF2 Activity in Neuroendocrine Lung Tumors vol.20, pp.10, 2015, https://doi.org/10.3390/ijms20102531
  14. Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells vol.47, pp.2, 2015, https://doi.org/10.1007/s11033-019-05194-8
  15. Quercetin protects the buffalo rat liver (BRL-3A) cells from aflatoxin B1-induced cytotoxicity via activation of Nrf2-ARE pathway vol.13, pp.2, 2020, https://doi.org/10.3920/wmj2019.2465
  16. The Protective Effect of Aspirin Eugenol Ester on Oxidative Stress to PC12 Cells Stimulated with H2O2 through Regulating PI3K/Akt Signal Pathway vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/5527475
  17. Identification of Redox-Sensitive Transcription Factors as Markers of Malignant Pleural Mesothelioma vol.13, pp.5, 2015, https://doi.org/10.3390/cancers13051138
  18. In Vitro Study of Two Edible Polygonoideae Plants: Phenolic Profile, Cytotoxicity, and Modulation of Keap1-Nrf2 Gene Expression vol.10, pp.4, 2015, https://doi.org/10.3390/foods10040811
  19. Chemoprevention of Prostate Cancer Cells by Vitamin C plus Quercetin: role of Nrf2 in Inducing Oxidative Stress vol.73, pp.10, 2015, https://doi.org/10.1080/01635581.2020.1819346