DOI QR코드

DOI QR Code

나노 화합물을 이용한 Acidovorax citrulli 및 식물병원성 미생물의 항균활성 효과 검정

Antimicrobial Activity of Nano Materials against Acidovorax citrulli and Other Plant Pathogens

  • Kim, Sang Woo (Department of Applied Plant Sciences, Kangwon National University) ;
  • Adhikari, Mahesh (Department of Applied Plant Sciences, Kangwon National University) ;
  • Yadav, Dil Raj (Department of Applied Plant Sciences, Kangwon National University) ;
  • Lee, Hyun Goo (Department of Applied Plant Sciences, Kangwon National University) ;
  • Um, Young Hyun (Department of Applied Plant Sciences, Kangwon National University) ;
  • Kim, Hyun Seung (Department of Applied Plant Sciences, Kangwon National University) ;
  • Lee, Youn Su (Department of Applied Plant Sciences, Kangwon National University)
  • 투고 : 2015.02.27
  • 심사 : 2015.03.10
  • 발행 : 2015.03.31

초록

나노 화합물을 이용하여 식물병원성 미생물의 항균활성을 검정하기 위하여 실험을 수행하였다. 12가지 나노 화합물을 이용하였으며, 곰팡이 3종과 수박과실썩음병(BFB: Acidovorax citrulli) 16계통을 이용하여 실험한 결과, 곰팡이 병원균에 대하여 C. destructans의 경우 항균효과가 없는 것으로 확인되었으며, P. ultimum의 경우 Brass/Glucose 1,000 ppm에서 94%의 균사 생장 억제 효과를 확인하였으며, R. solani는 Ag/Glucose 3,000 ppm에서 약간의 효과는 있었으나 매우 경미한 것을 확인하였으며, 나머지 나노 화합물에서는 항균 효과가 없는 것으로 확인 되었다. A. citrulli의 경우 석회에서 가장 높은 항균 활성을 확인하였으며, Cu/Salt 1,000 ppm는 7종에 대하여 최소 97% 의 항균 활성을 보였으며, 5종에 대하여 99%의 높은 항균활성을 확인하였다. Ag/Glucose 1,000 ppm은 7종의 수박과실썩음병(BFB) 병원균 A. citrulli에 대하여 63%의 항균활성을 보여주었다. $Brass/CaCO_3$ 3,000 ppm은 석회 보다는 조금 낮은 92%의 항균 활성을 보여 주었으며, 나머지 나노 화합물은 24-70%의 항균활성을 확인하였다.

Antimicrobial activities of nano-materials were tested against several plant pathogens. Twelve different nano-materials were used to observe the antagonistic activity against three kinds of mold and sixteen different kinds of watermelon fruit rot pathogens (Acidovorax citrulli). According to the results, no antagonism have been found against the pathogen, Cylindrocarpon destructans. However in the case of Pythium ultimum, combination of Brass/Glucose 1,000 ppm confirmed the mycelial growth reduction by 94%. In addition, little effect was found against Rhizoctonia solani by Ag/Glucose 3,000 ppm. The remaining other nano-materials have different antimicrobial effect depending on the strains of A. citrulli. But in the case of lime (Cu/Salt 1,000 ppm) highest antimicrobial activity was observed with 97%. Moreover growth of five different strains of A. citrulli was checked by 99% with the combination of Ag/Glucose 1,000 ppm. 92% reduction of A. citrulli growth was observed with $Brass/CaCO_3$ 3,000 ppm. Tested nano-materials against different plant pathogens in this study showed the antimicrobial activity at the range of 24-70%.

키워드

참고문헌

  1. Kim, H. Y., Chang, H. S., Kim, J. E., Chung, D. J., Lee, J. S. and Choi, C. B. 2006. The antibacterial effect of photo-catalytic titanium dioxide on canine skin. Korean J. Vet. Res. 46: 279-284.
  2. Hwang, I. S., Cho, J. Y., Hwang, J. H., Hwang, B. M., Choi, H. M., Lee, J. Y. and Lee, D. G. 2011. Antimicrobial effects and mechanism(s) of silver nanoparticle. Korean J. Microbiol. Biotechnol. 39: 1-8.
  3. Rhee, J. M., Park, S. J. and Kim, B. J. 2003. Antibacterial activity of activated carbon fibers containing copper meta. The Polymer Society of Korea 27: 235-241.
  4. Oya, A., Wakahara, T. and Yoshida, S. 1993. Preparation of pitchbased antibacterial activated carbon fiber. Carbon 31: 1243-1247. https://doi.org/10.1016/0008-6223(93)90082-L
  5. Oya, A., Yoshida, S., Monge, J. A. and Solano, A. L. 1996. Preparation and properties of an antibacterial activated carbon fiber containing mesopores. Carbon 34: 53-57. https://doi.org/10.1016/0008-6223(95)00134-4
  6. Li, C. Y., Wan, Y. Z., Wang, J., Wang, Y. L., Jiang, X. Q. and Han, L. M. 1998. Antibacterial pitch-based activated carbon fiber supporting silver. Carbon 36: 61-65. https://doi.org/10.1016/S0008-6223(97)00151-6
  7. Blasco, F., Perello, L., Latorre, J., Borras, J., Granda, S. G. and Inorg, J. 1996. Cobalt(II), Nickel(II), and Copper(II) complexes of sulfanilamide derivatives: Synthesis, spectroscopic studies, and antibacterial activity. Crystal structure of [$Co(sulfacetamide)_2(NCS)_2$]. Biochemistry 61: 143-154.
  8. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N. and Kim, J. O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  9. Holt, K. B. and Bard, A. J. 2005. The interaction of silver (i) ions with the respiratory chain of escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar $Ag^+$. Biochemistry 44: 13214-13223. https://doi.org/10.1021/bi0508542
  10. Lim, M. G., Jung, B. J., Lee, E. Y., Lee, N. Y., Park, H. G., Nam, W. J. and Schobert, H. H. 2008. Emission characteristics of VOCs and formaldehyde discharged from car sheet cover using small emission chamber. Korean J. Odor Res. Eng. 7: 147-157. (In Korean)
  11. Park, H. J., Kim, J. Y., Kim, J., Lee, J. H., Hahn, J. S., Gu, M. B. and Yoon, J. 2009. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 43: 1027-1032. https://doi.org/10.1016/j.watres.2008.12.002
  12. Roh, J. Y., Sim, S. J., Yi, J., Park, K., Chung, K. H., Ryu, D. Y. and Choi, J. 2009. Eco toxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional eco toxico genomics. Environ. Sci. Technol. 43: 3933-3940. https://doi.org/10.1021/es803477u
  13. Sunada, K., Kikuchi, Y., Hashimoto, K. and Fujishima, A. 1998. Bactericidal and detoxification dffects of $TiO_2$ thin film photo catalysts. Environ. Sci. Tec. Biol. 26: 1-21.

피인용 문헌

  1. High Performance Materials for Ophthalmic Hydrogel Lens Containing Nanoparticles vol.9, pp.1, 2016, https://doi.org/10.13160/ricns.2016.9.1.16
  2. Analysis of Control Efficacy of Bacterial Fruit Blotch Caused by Acidovorax avenae subsp. citrulli in Recent Issues vol.20, pp.1, 2016, https://doi.org/10.7585/kjps.2016.20.1.41
  3. Nanoparticles as Alternative Pesticides: Concept, Manufacturing and Activities vol.43, pp.4, 2015, https://doi.org/10.4489/KJM.2015.43.4.207