References
- Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M. and Sheen, J. 2002. Map kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977-983. https://doi.org/10.1038/415977a
- Beckers, G. J., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S. and Conrath, U. 2009. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944-953. https://doi.org/10.1105/tpc.108.062158
- Boller, T. and Felix, G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
- Cao, H., Bowling, S. A., Gordon, A. S. and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583-1592. https://doi.org/10.1105/tpc.6.11.1583
- Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., Felix, G. and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497-500. https://doi.org/10.1038/nature05999
- Colcombet, J. and Hirt, H. 2008. Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. Biochem. J. 413:217-226. https://doi.org/10.1042/BJ20080625
- Conrath, U., Pieterse, C. M. and Mauch-Mani, B. 2002. Priming in plant-pathogen interactions. Trends Plant Sci. 7:210-216. https://doi.org/10.1016/S1360-1385(02)02244-6
- Droillard, M. J., Boudsocq, M., Barbier-Brygoo, H. and Lauriere, C. 2004. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of arabidopsis thaliana: Activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett. 574:42-48. https://doi.org/10.1016/j.febslet.2004.08.001
- Gomez-Gomez, L. and Boller, T. 2000. Fls2: An lrr receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:1003-1011. https://doi.org/10.1016/S1097-2765(00)80265-8
- Kohler, A., Schwindling, S. and Conrath, U. 2002. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the npr1/nim1 gene in Arabidopsis. Plant Physiol. 128:1046-1056. https://doi.org/10.1104/pp.010744
- Maleck, K., Neuenschwander, U., Cade, R. M., Dietrich, R. A., Dangl, J. L. and Ryals, J. A. 2002. Isolation and characterization of broad-spectrum disease-resistant Arabidopsis mutants. Genetics 160:1661-1671.
- Mersmann, S., Bourdais, G., Rietz, S. and Robatzek, S. 2010. Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol. 154:391-400. https://doi.org/10.1104/pp.110.154567
- Nawrath, C. and Metraux, J. P. 1999. Salicylic acid inductiondeficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393-1404.
- Prime, A. P. G., Conrath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: Getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071. https://doi.org/10.1094/MPMI-19-1062
- Tsuda, K., Glazebrook, J. and Katagiri, F. 2008. The interplay between mamp and sa signaling. Plant Signal Behav. 3:359-361. https://doi.org/10.4161/psb.3.6.5702
- Yi, S. Y., Shirasu, K., Moon, J. S., Lee, S. G. and Kwon, S. Y. 2014. The activated sa and ja signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One 9:e88951. https://doi.org/10.1371/journal.pone.0088951
Cited by
- Innate immune memory in plants vol.28, pp.4, 2016, https://doi.org/10.1016/j.smim.2016.05.006
- Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook vol.12, pp.4, 2017, https://doi.org/10.1007/s11515-017-1460-4
- Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2 vol.41, pp.6, 2016, https://doi.org/10.1007/s40858-016-0108-2
- SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum) vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172466
- Defense Priming: An Adaptive Part of Induced Resistance vol.68, pp.1, 2017, https://doi.org/10.1146/annurev-arplant-042916-041132
- Preparing plants for improved cold tolerance by priming pp.01407791, 2018, https://doi.org/10.1111/pce.13394
- Bacillus amyloliquefaciens strain MBI600 induces salicylic acid dependent resistance in tomato plants against Tomato spotted wilt virus and Potato virus Y vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-28677-3
- Innate immune memory: An evolutionary perspective vol.283, pp.1, 2018, https://doi.org/10.1111/imr.12647
- The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance vol.10, pp.1664-462X, 2019, https://doi.org/10.3389/fpls.2019.00102