DOI QR코드

DOI QR Code

NPR1 is Instrumental in Priming for the Enhanced flg22-induced MPK3 and MPK6 Activation

  • Yi, So Young (Plant Systems Engineering Research Center, KRIBB) ;
  • Min, Sung Ran (Plant Systems Engineering Research Center, KRIBB) ;
  • Kwon, Suk-Yoon (Plant Systems Engineering Research Center, KRIBB)
  • Received : 2014.10.26
  • Accepted : 2015.03.15
  • Published : 2015.06.01

Abstract

Pathogen-associated molecular patterns (PAMPs) activate mitogen-activated protein kinases (MAPKs), essential components of plant defense signaling. Salicylic acid (SA) is also central to plant resistance responses, but its specific role in regulation of MAPK activation is not completely defined. We have investigated the role of SA in PAMP-triggered MAPKs pathways in Arabidopsis SA-related mutants, specifically in the flg22-triggered activation of MPK3 and MPK6. cim6, sid2, and npr1 mutants exhibited wild-type-like flg22-triggered MAPKs activation, suggesting that impairment of SA signaling has no effect on the flg22-triggered MAPKs activation. Pretreatment with low concentrations of SA enhanced flg22-induced MPK3 and MPK6 activation in all seedlings except npr1, indicating that NPR1 is involved in SA-mediated priming that enhanced flg22-induced MAPKs activation.

Keywords

References

  1. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M. and Sheen, J. 2002. Map kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977-983. https://doi.org/10.1038/415977a
  2. Beckers, G. J., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S. and Conrath, U. 2009. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944-953. https://doi.org/10.1105/tpc.108.062158
  3. Boller, T. and Felix, G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
  4. Cao, H., Bowling, S. A., Gordon, A. S. and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583-1592. https://doi.org/10.1105/tpc.6.11.1583
  5. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., Felix, G. and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497-500. https://doi.org/10.1038/nature05999
  6. Colcombet, J. and Hirt, H. 2008. Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. Biochem. J. 413:217-226. https://doi.org/10.1042/BJ20080625
  7. Conrath, U., Pieterse, C. M. and Mauch-Mani, B. 2002. Priming in plant-pathogen interactions. Trends Plant Sci. 7:210-216. https://doi.org/10.1016/S1360-1385(02)02244-6
  8. Droillard, M. J., Boudsocq, M., Barbier-Brygoo, H. and Lauriere, C. 2004. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of arabidopsis thaliana: Activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett. 574:42-48. https://doi.org/10.1016/j.febslet.2004.08.001
  9. Gomez-Gomez, L. and Boller, T. 2000. Fls2: An lrr receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:1003-1011. https://doi.org/10.1016/S1097-2765(00)80265-8
  10. Kohler, A., Schwindling, S. and Conrath, U. 2002. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the npr1/nim1 gene in Arabidopsis. Plant Physiol. 128:1046-1056. https://doi.org/10.1104/pp.010744
  11. Maleck, K., Neuenschwander, U., Cade, R. M., Dietrich, R. A., Dangl, J. L. and Ryals, J. A. 2002. Isolation and characterization of broad-spectrum disease-resistant Arabidopsis mutants. Genetics 160:1661-1671.
  12. Mersmann, S., Bourdais, G., Rietz, S. and Robatzek, S. 2010. Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol. 154:391-400. https://doi.org/10.1104/pp.110.154567
  13. Nawrath, C. and Metraux, J. P. 1999. Salicylic acid inductiondeficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393-1404.
  14. Prime, A. P. G., Conrath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: Getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071. https://doi.org/10.1094/MPMI-19-1062
  15. Tsuda, K., Glazebrook, J. and Katagiri, F. 2008. The interplay between mamp and sa signaling. Plant Signal Behav. 3:359-361. https://doi.org/10.4161/psb.3.6.5702
  16. Yi, S. Y., Shirasu, K., Moon, J. S., Lee, S. G. and Kwon, S. Y. 2014. The activated sa and ja signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One 9:e88951. https://doi.org/10.1371/journal.pone.0088951

Cited by

  1. Innate immune memory in plants vol.28, pp.4, 2016, https://doi.org/10.1016/j.smim.2016.05.006
  2. Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook vol.12, pp.4, 2017, https://doi.org/10.1007/s11515-017-1460-4
  3. Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2 vol.41, pp.6, 2016, https://doi.org/10.1007/s40858-016-0108-2
  4. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum) vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172466
  5. Defense Priming: An Adaptive Part of Induced Resistance vol.68, pp.1, 2017, https://doi.org/10.1146/annurev-arplant-042916-041132
  6. Preparing plants for improved cold tolerance by priming pp.01407791, 2018, https://doi.org/10.1111/pce.13394
  7. Bacillus amyloliquefaciens strain MBI600 induces salicylic acid dependent resistance in tomato plants against Tomato spotted wilt virus and Potato virus Y vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-28677-3
  8. Innate immune memory: An evolutionary perspective vol.283, pp.1, 2018, https://doi.org/10.1111/imr.12647
  9. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance vol.10, pp.1664-462X, 2019, https://doi.org/10.3389/fpls.2019.00102