DOI QR코드

DOI QR Code

Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

  • Chung, Eu Jin (Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Hossain, Mohammad Tofajjal (Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Khan, Ajmal (Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Kyung Hyun (Department of Life Science, Chung-Ang University) ;
  • Jeon, Che Ok (Department of Life Science, Chung-Ang University) ;
  • Chung, Young Ryun (Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • 투고 : 2014.12.29
  • 심사 : 2015.04.07
  • 발행 : 2015.06.01

초록

Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and $YC7010^T$, with antimicrobial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208) and Burkholderia glumae (KACC 44022), respectively, were also suppressed effectively by drenching a bacterial suspension ($10^7cfu/ml$) of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC $15859^T$ (99.67%), Bacillus methylotrophicus KACC $13105^T$ (99.65%), Bacillus amyloliquefaciens subsp. plantarum KACC $17177^T$ (99.60%), and Bacillus tequilensis KACC $15944^T$ (99.45%). The DNA-DNA relatedness value between strain $YC7010^T$ and the most closely related strain, B. siamensis KACC $15859^T$ was $50.4{\pm}3.5%$, but it was $91.5{\pm}11.0%$ between two strains YC7007 and $YC7010^T$, indicating the same species. The major fatty acids of two strains were anteiso-$C_{15:0}$ and iso $C_{15:0}$. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the two strains YC7007 and $YC7010^T$ represent novel species of the genus Bacillus, for which the name Bacillus oryzicola sp. nov. is proposed. The type strain is $YC7010^T$ (= KACC $18228^T$). Taken together, our findings suggest that novel endophytic Bacillus strains can be used for the biological control of rice diseases.

키워드

참고문헌

  1. Annonymous 2014. Rice market monitor. In: Monthly Report, Food and Agriculture Organization of the United Nations, vol. 17, iss. 1, pp 1-4.
  2. Ahn, I. P., Lee, S. W. and Suh, S. C. 2007. Rhizobacteria induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Mol. Plant-Microbe Interact. 20:759-768. https://doi.org/10.1094/MPMI-20-7-0759
  3. Ahn, I. P., Kim, S., Kang, S., Suh, S. C. and Lee, Y. H. 2005. Rice defense mechanisms against Cochliobolus miyabeanus and Magnaporthe grisea are distinct. Phytopathology 95:1248-1255. https://doi.org/10.1094/PHYTO-95-1248
  4. Ausubel, F. W., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1995. Current Protocols in Molecular Biology, New York: Wiley.
  5. Bibi, F., Yasir, M., Song, G. C., Lee, S. Y. and Chung, Y. R. 2012. Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens. Plant Pathol. J. 28:20-31. https://doi.org/10.5423/PPJ.OA.06.2011.0123
  6. Bibi, F., Chung, E. J., Jeon, C. O. and Chung, Y. R. 2011. Bacillus graminis sp. nov., an endophytic bacterium isolated from a coastal dune plant. Int. J. Syst. Evol. Microbiol. 61:1567-1571. https://doi.org/10.1099/ijs.0.023820-0
  7. Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319. https://doi.org/10.1104/pp.103.028712
  8. Bonman, J. M. 1992. Root and crown disease, bakanae. In: Compendium of Rice Diseases, eds. by R. K. Webster and P. S. Gunnell, p. 27. APS press, University of California, Davis.
  9. Bouizgarne, B. 2013. Bacteria for plant growth promotion and disease management. In: Bacteria in Agrobiology, Disease Mangement, ed. by D. K. Maheshwari, pp. 15-34. Springer-Verlag, Berlin, Heidelberg.
  10. Chen, X. H., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S. and Borriss, R. 2009. Difficidin and bacilysin produced by plant associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140:38-44. https://doi.org/10.1016/j.jbiotec.2008.10.015
  11. Choi, G. J., Kim, J. C., Park, E. J., Choi, Y. H., Jang, K. S., Lim, H. K., Cho, K. Y. and Lee, S. W. 2006. Biological control activity of two isolates of Pseudomonas fluorescens against rice sheath blight. Plant Pathol. J. 22:289-294. https://doi.org/10.5423/PPJ.2006.22.3.289
  12. Cottyn, B., Cerez, M. T., Van Outryve, M. F., Barroga, J., Swings, J. and Mew, T. W. 1996. Bacterial diseases of rice. I. Pathogenic bacteria associated with sheath rot complex and grain discoloration of rice in the Philippines. Plant Dis. 80:429-437. https://doi.org/10.1094/PD-80-0429
  13. Crane, J. M., Gibson, D. M., Vaughan, R. H. and Bergstrom, G. C. 2013. Iturin levels on wheat spikes linked to biological control of Fusarium head blight by Bacillus amyloliquefaciens. Phytopathology 103:146-155. https://doi.org/10.1094/PHYTO-07-12-0154-R
  14. Croplife 2015. Bacterial panicle blight, the disease with the greatest impact on rice crops. (http://www.croplifela.org/en/disease-of-the-month.html?id=182).
  15. De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I. R., Vera Cruz, C., Kikuchi, S. and Hofte, M. 2012. Brassinosteroids antagonize gibberellin and salicylate mediated root immunity in rice. Plant Physiol. 158:1833-1846. https://doi.org/10.1104/pp.112.193672
  16. Dimkic, I., Zivkovic, S., Beric, T., Ivanovic, Z., Gavrilovic, V., Stankovic, S. and Fira, D. 2013. Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. Biol. Control 65:312-321. https://doi.org/10.1016/j.biocontrol.2013.03.012
  17. Dittmer, J. C. and Lester, R. L. 1964. A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 15:126-127.
  18. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  19. Fitch, W. M. 1972. Toward defining the course of evolution:minimum change for a specific tree topology. Syst. Biol. 20:406-416.
  20. Gnanamanickam, S. S. 2009. An overview of progress in biological control. In: Biological Control of Rice Diseases, Progress in Biological Control, ed. by S. S. Gnanamanickam, vol. 8, pp. 43-51. Springer, Netherlands.
  21. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. and Tiedje, J. M. 2007. DNA-DNA hybridization values and their relationship to whole genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57:81-91. https://doi.org/10.1099/ijs.0.64483-0
  22. Hall, T. A. 1999. BioEdit: a user friendly biological sequence aligned editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
  23. Hu, X., Roberts, D. P., Maul, J. E., Emche, S. E., Liao, X., Guo, X., Liu, Y., McKenna, L. F., Buyer, J. S. and Liu, S. 2011. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Can. J. Microbiol. 57:539-546. https://doi.org/10.1139/w11-041
  24. Jacin, H. and Mishkin, A. R. 1965. Separation of carbohydrates on borate impregnated silica gel G plates. J. Chromatogr. 18:170-173.
  25. Kampfer, P. 1994. Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst. Appl. Microbiol. 17:86-98. https://doi.org/10.1016/S0723-2020(11)80035-4
  26. Kang, H., Weerawongwiwat, V., Kim, J. H., Sukhoom, A. and Kim, W. 2013. Bacillus songkensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 63:4189-4195. https://doi.org/10.1099/ijs.0.050682-0
  27. Kazempour, M. N. and Elahinia, S. A. 2007. Biological control of Fusarium fujikuroi, the causal agent of bakanae disease by rice associated antagonistic bacteria. Bulg. J. Agric. Sci. 13:393-408.
  28. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S. and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62:716-721. https://doi.org/10.1099/ijs.0.038075-0
  29. Kim, J., Kang, Y., Kim, J. G., Choi, O. and Hwang, I. 2010. Occurrence of Burkholderia glumae on rice and field crops in Korea. Plant Pathol. J. 26:271-272. https://doi.org/10.5423/PPJ.2010.26.3.271
  30. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  31. Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19:161-207.
  32. Lane, D. J. 1991. 16S/23S rRNA sequencing. In: Nucleic Acid Techniques in Bacterial Systematics, eds. by E. Stackebrandt and M. Goodfellow, pp. 115-175. Chichester: Wiley.
  33. Lee, S. H., Shim, J. K., Kim, J. M., Choi, H. K. and Jeon, C. O. 2011. Henriciella litoralis sp. nov., isolated from a tidal flat, transfer of Maribaculam marinum Lai et al. to the genus Henriciella as Henriciella aquimarina nom. nov. and emended description of genus Henriciella. Int. J. Syst. Evol. Microbiol. 61:722-727. https://doi.org/10.1099/ijs.0.020396-0
  34. LPSN. 2015. List of prokaryotic names with standing in nomenclature. (http://www.bacterio.net/bacillus.html).
  35. Madhaiyan, M., Poonguzhali, S., Kwon, S. W. and Sa, T. M. 2010. Bacillus methylotrophicus sp. nov., a methanol utilizing, plant growth promoting bacterium isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60:2490-2495. https://doi.org/10.1099/ijs.0.015487-0
  36. McSpadden Gardener, B. 2010. Biocontrol of plant pathogens and plant growth promotion by Bacillus. In: Recent Developments in Management of Plant Diseases, Plant Pathology in the 21st Century. eds. by U. Gisi, I. Chet and M. L. Gullino, chapt. 6, pp. 71-79. Springer-Amsterdam.
  37. Mesbah, M., Premachandran, U. and Whitman, W. B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159-167. https://doi.org/10.1099/00207713-39-2-159
  38. Mew, T. W. 1992. Foliar disease, bacterial blight. In: Compendium of Rice Diseases, eds. by R. K. Webster and P. S. Gunnell, pp. 10-11. APS press, University of California, Davis.
  39. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. and Parlett, J. H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2:233-241. https://doi.org/10.1016/0167-7012(84)90018-6
  40. Misra, J. K., Mew, T. W. and Merca, S. D. 1994. Field inspection. In: A Manual of Rice Seed Health Testing, eds. by T. W. Mew and J. K. Misra, pp. 52-55. International Rice Research Institute, Philippines.
  41. Niu, D. D., Liu, H. X., Jiang, C. H., Wang, Y. P., Wang, Q. Y., Jin, H. L. and Guo, J. H. 2011. The plant growth promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene dependent signaling pathways. Mol. Plant-Microbe Interact. 24:533-542. https://doi.org/10.1094/MPMI-09-10-0213
  42. Ou, S. H. 1985. Rice disease. 2nd ed. Commonwealth Mycol. Inst., Key, England. 361 pp.
  43. Park, K. S., Paul, D., Kim, J. S. and Park, J. W. 2009. L-alanine augments Rhizobacteria induced systemic resistance in cucumber. Folia Microbiol. 54:322-326. https://doi.org/10.1007/s12223-009-0041-6
  44. Park, K. S., Paul, D. and Yeh, W. H. 2006. Bacillus vallismortis EXTN-1 mediated growth promotion and disease suppression in rice. Plant Pathol. J. 22:278-282. https://doi.org/10.5423/PPJ.2006.22.3.278
  45. Parte, A. C. 2014. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42:613-616. https://doi.org/10.1093/nar/gkt1111
  46. Picard, C., Baruffa, E. and Bosco, M. 2008. Enrichment and diversity of plant probiotic microorganisms in the rhizosphere of hybrid maize during four growth cycles. Soil Biol. Biochem. 40:106-115. https://doi.org/10.1016/j.soilbio.2007.07.011
  47. Reichenbach, H. 1992. The order Cytophagales. In: The Prokaryotes, eds. by A. Balows, H. G. Truper, M. Dworkin, W. Harder and K. H. Schleifer, 2nd ed., vol. 4, pp. 3631-3675. Springer, New York.
  48. Rosales, A. M. and Mew, T. W. 1997. Suppression of Fusarium moniliforme in rice by rice-associated antagonistic bacteria. Plant Dis. 81:49-52. https://doi.org/10.1094/PDIS.1997.81.1.49
  49. Ross, H. N. M., Grant, W. D. and Harris, J. E. 1985. Lipids in archaebacterial taxonomy. In: Chemical Methods in Bacterial Systematics, eds. by M. Goodfellow and D. E. Minnikin, pp. 289-300. Academic Press, London.
  50. Ryu, C. M. 2013. Promoting plant protection by root-associated microbes. Plant Pathol. J. 29:123-124.
  51. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. https://doi.org/10.1104/pp.103.026583
  52. Ryu, C. M., Murphy, J. F., Mysore, K. S. and Kloepper, J. W. 2004. Plant growth promoting rhizobacteria systemically protect Arabidopsis thaliana against cucumber mosaic virus by a salicylic acid and NPR1 independent and jasmonic acid dependent signaling pathway. Plant J. 38:381-392. https://doi.org/10.1111/j.1365-313X.2004.02055.x
  53. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  54. Savary, S., Willocquet, L., Elazegui, F. A., Castilla, N. P. and Teng, P. S. 2000. Rice pest constrainsts in tropical Asia: Quantification of yield losses due to rice pests in a range of production situations. Plant Dis. 84:357-369. https://doi.org/10.1094/PDIS.2000.84.3.357
  55. Schleifer, K. H. 1985. Analysis of the chemical composition and primary structure of murein. Methods Microbiol. 18:123-156. https://doi.org/10.1016/S0580-9517(08)70474-4
  56. Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization. In: Methods for General and Molecular Bacteriology, eds. by P. Gerhardt, R. G. E. Murray, W. A. Wood and N. R. Krieg, pp. 607-654. American Society for Microbiology, Washington, DC.
  57. Stackebrandt, E. and Goebel, B. M. 1994. Taxonomic Note: A place for DNA-DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849. https://doi.org/10.1099/00207713-44-4-846
  58. Stanek, J. L. and Roberts, G. D. 1974. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28:226-231.
  59. Sumpavapol, P., Tongyonk, L., Tanasupawat, S., Chokesajjaatee, N., Luxananil, P. and Visessanguan, W. 2010. Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand. Int. J. Syst. Evol. Microbiol. 60:2364-2370. https://doi.org/10.1099/ijs.0.018879-0
  60. Sung, K. C. and Chung, Y. R. 1997. Enhanced suppression of rice sheath blight using combination of bacteria which produce chitinases or antibiotics. In: Proceedings of the 4th International Workshop on Plant Growth Promoting Rhizobacteria Present Status and Future Prospects, eds. by A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Konodo and S. Akino, pp. 370-373. OECD, Paris.
  61. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  62. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  63. Ura, H., Furuya, N., Iiyama, K., Hidaka, M., Tsuchiya, K. and Matsuyama, N. 2006. Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants. J. Gen. Plant Pathol. 72:98-103. https://doi.org/10.1007/s10327-005-0256-6
  64. Wang, D, Mukhtar, K. P., Culler, A. H. and Dong, X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17:1784-1790. https://doi.org/10.1016/j.cub.2007.09.025
  65. Xu, P., Li, W. J., Tang, S. K., Zhang, Y. Q., Chen, G. Z., Chen, H. H., Xu, L. H. and Jiang, C. 2005. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int. J. Syst. Evol. Microbiol. 55:1149-1153. https://doi.org/10.1099/ijs.0.63407-0
  66. Yang, Y. R., Kim, Y. C., Lee, S. W., Lee, S. W., An, G. G. and Kim, I. S. 2012. Involvement of an efflux transporter in prochloraz resistance of Fusarium fujikuroi CF245 causing rice bakanae disease. J. Korean Soc. Appl. Biol. Chem. 55:571-574. https://doi.org/10.1007/s13765-012-2126-1
  67. Yang, J. W., Yu, S. H. and Ryu, C. M. 2009. Priming of defenserelated genes confers root-colonizing Bacilli-elicited induced systemic resistance in pepper. Plant Pathol. J. 25:389-399. https://doi.org/10.5423/PPJ.2009.25.4.389
  68. Yasir, M., Aslam, Z., Song, G. C., Jeon, C. O. and Chung, Y. R. 2010. Sphingosinicella vermicomposti sp. nov., isolated from vermicompost, and emended description of the genus Sphingosinicella. Int. J. Syst. Evol. Microbiol. 60:580-584. https://doi.org/10.1099/ijs.0.010777-0

피인용 문헌

  1. Metagenome analysis of the root endophytic microbial community of Indian rice ( O. sativa L.) vol.12, 2017, https://doi.org/10.1016/j.gdata.2017.02.010
  2. Chitosan and plant probiotics application enhance growth and yield of strawberry vol.11, 2017, https://doi.org/10.1016/j.bcab.2017.05.005
  3. Functional and genomic insights into the pathogenesis of B urkholderia species to rice vol.18, pp.3, 2016, https://doi.org/10.1111/1462-2920.13189
  4. Suppressing activity of staurosporine fromStreptomycessp. MJM4426 against rice bacterial blight disease vol.120, pp.4, 2016, https://doi.org/10.1111/jam.13034
  5. Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007 vol.32, pp.3, 2016, https://doi.org/10.5423/PPJ.OA.10.2015.0218
  6. Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose on Euonymus japonicus vol.27, pp.5, 2017, https://doi.org/10.1080/09583157.2017.1319910
  7. Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L.) rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.) vol.57, pp.2, 2017, https://doi.org/10.1515/jppr-2017-0020
  8. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics vol.66, pp.3, 2016, https://doi.org/10.1099/ijsem.0.000858
  9. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex vol.8, 2017, https://doi.org/10.3389/fmicb.2017.00022
  10. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis vol.8, 2017, https://doi.org/10.3389/fpls.2017.00211
  11. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests vol.5, pp.2046-1402, 2016, https://doi.org/10.12688/f1000research.9662.1
  12. Identification, Characteristics and Mechanism of 1-Deoxy-N-acetylglucosamine from Deep-Sea Virgibacillus dokdonensis MCCC 1A00493 vol.16, pp.2, 2018, https://doi.org/10.3390/md16020052
  13. Application of Bacillus velezensis NJAU-Z9 Enhanced Plant Growth Associated with Efficient Rhizospheric Colonization Monitored by qPCR with Primers Designed from the Whole Genome Sequence vol.75, pp.12, 2018, https://doi.org/10.1007/s00284-018-1563-4
  14. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops pp.1432-203X, 2018, https://doi.org/10.1007/s00299-018-2341-2
  15. Streptomyces sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (Solanum lycopersicum cv. Micro-Tom) vol.56, pp.10, 2018, https://doi.org/10.1007/s12275-018-8120-5
  16. CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens vol.6, pp.4, 2018, https://doi.org/10.1128/genomeA.01543-17