DOI QR코드

DOI QR Code

Analysis of Fungicide Sensitivity and Genetic Diversity among Colletotrichum Species in Sweet Persimmon

  • Gang, Geun-Hye (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, Hyun Ji (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Hye Sun (Division of Applied Life Science, Gyeongsang National University) ;
  • Kwack, Yong-Bum (Namhae Sub-Station, NIHHS, RDA) ;
  • Kwak, Youn-Sig (Division of Applied Life Science, Gyeongsang National University)
  • 투고 : 2015.03.11
  • 심사 : 2015.04.17
  • 발행 : 2015.06.01

초록

Anthracnose, caused by Colletotrichum gloeosporioides (C. gloeosporioides; Teleomorph: Glomerella cingulata), is the most destructive disease that affects sweet persimmon production worldwide. However, the biology, ecology, and genetic variations of C. gloeosporioides remain largely unknown. Therefore, in this study, the development of fungicide resistance and genetic diversity among an anthracnose pathogen population with different geographical origins and the exposure of this population to different cultivation strategies were investigated. A total of 150 pathogen isolates were tested in fungicide sensitivity assays. Five of the tested fungicides suppressed mycelial pathogen growth effectively. However, there were significant differences in the sensitivities exhibited by the pathogen isolates examined. Interestingly, the isolates obtained from practical management orchards versus organic cultivation orchards showed no differences in sensitivity to the same fungicide. PCR-restriction fragment length polymorphism (RFLP) analyses were performed to detect internal transcribed spacer regions and the ${\beta}$-tubulin and glutamine synthetase genes of the pathogens examined. Both the glutamine synthetase and ${\beta}$-tubulin genes contained a complex set of polymorphisms. Based on these results, the pathogens isolated from organic cultivation orchards were found to have more diversity than the isolates obtained from the practical management orchards.

키워드

참고문헌

  1. Chen, L. S., Chu, C., Liu, C. D., Chen, R. S. and Tsay, J. G. 2006. CR-based detection and differentiation of anthracnose pathogens, Colletotrichum gloeosporioides and C. truncatum, from vegetable soybean in Taiwan. J. Phytopathol. 154:654-662. https://doi.org/10.1111/j.1439-0434.2006.01163.x
  2. Chung, W. H., Chung, W. C., Peng, M. T., Yang, H. R. and Huang, J. W. 2010. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP. Nat. Biotechnol. 27:17-24.
  3. Guerber, J. C., Li, B., Correl, J. C. and Johnston, P. R. 2003. Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia 95:872-895. https://doi.org/10.2307/3762016
  4. Hidenrand, P. D., Lockart, C. L., Newbery, R. J. and Ross, R. G. 1988. Resistance of Venturia inaequalis to bitertanol and other demethylation-inhibiting fungicides. Can. J. Plant Pathol. 10:311-316. https://doi.org/10.1080/07060668809501704
  5. Kwon, J.-H. and Park, C.-S. 2004. Dissemination of conidiospores of Colletotrichum gloeosporiodes, the anthracnose of persimmon and the disease development. Res. Plant Dis. 10:272-278. https://doi.org/10.5423/RPD.2004.10.4.272
  6. Kim, K.-K., Yoon, J.-B., Park, H.-G., Park, E.-W. and Kim, Y.-H. 2004. Structural modifications and programmed cell death of chilli pepper fruits related to resistance responses to Colletotrichum gloeosporioides infection. J. Phytopathol. 94:1295-1304. https://doi.org/10.1094/PHYTO.2004.94.12.1295
  7. Kumar, M. and Shukla, P. K. 2005. Use of PCR Targeting of internal transcribed spacer regions and single-stranded conformation polymorphism analysis of sequence variation in different regions of rRNA genes in fungi for rapid diagnosis of mycotic keratitis. Microbiology 43:662-668.
  8. Kumar, A. S., Reddy, N. P. E., Reddy, K. H. and Devi, M. C. 2007. Evaluation of fungicidal resistance among Colletotrichum gloeosporioides isolates causing mango anthracnose in Agri Export Zone of Andhra Pradesh, India. Plant Pathol. 16:157-160.
  9. Lim, T.-H. and Choi, Y.-H. 2006. Response of several fungicides of Colletotrichum gloeosporioides isolates obtained from persimmons in Sangju. Kor. J. Plant Pathol. 12:99-102. (in Korean)
  10. Lim, T.-H., Choi, Y.-H., Lee, D.-W., Han, S.-S. and Cha, B.-J. 2009. Sensitivity of Colletotrichum gloeosporioides isolated from persimmon to benzimidazoles, mancozeb and propinep. Kor. J. Pesticide 13:105-110. (in Korean)
  11. Lopez, A. M. Q. and Lucas, J. A. 2010. Colletotrichum isolates related to Anthracnose of cashew trees in Brazil: morphological and molecular description using LSU rDNA sequences. Braz. Arch. Biol. Echnol. 53:741-52. https://doi.org/10.1590/S1516-89132010000400001
  12. Nei, M. 1973. Analysis of genetic diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70:3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  13. MacKenzie, S. J., Peres, N. A., Barquero, M. P., Arauz, L. F. and Timmer, L. W. 2009. Host range and genetic relatedness of Colletotrichum acutatum isolates from fruit crops and leather leaf fern in Florida. Phytopathology 99:620-631. https://doi.org/10.1094/PHYTO-99-5-0620
  14. Martin, P. M., Muruke, M., Hosea, K., Kivaisi, A., Zerwas, N. and Bauerle, C. 2004. A rapid PCR-RFLP method for monitoring genetic variation among commercial mushroom species. Biochem. Mol. Biol. Educ. 32:390-394. https://doi.org/10.1002/bmb.2004.494032060401
  15. Martinez-Culebras, P. V., Querol, A., Suarez-Fernandez, M. B., Garcia-Lopez, M. D. and Barrio, E. 2003. Phylogenetic relationships among Colletotrichum pathogens of strawberry and design of PCR primers for their identification. Phytopathology 151:135-143. https://doi.org/10.1046/j.1439-0434.2003.00694.x
  16. Maymon, M., Zveibi, A., Pivonia, S., Minz, D. and Freeman, S. 2006. Identification and characterization of benomyl-resistant and -sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology 96:542-548. https://doi.org/10.1094/PHYTO-96-0542
  17. Martin, M. P. and Garcia-Figueres, F. 1999. Colletotrichum acutatum and C. gloeosporioides cause anthracnose on olives. J. Phytopathol. 105:733-741.
  18. Phoulivong, S., Cai, L., Chen, H., McKenzie, E. H. C., Abdelsalam, K., Chukeatirote, E. and Hyde, K. D. 2010. Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Div. 44:33-43. https://doi.org/10.1007/s13225-010-0046-0
  19. Phoulivong, S. 2011. Colletotrichum, naming, control, resistance, biocontrol of weeds and current challenges. Appl. Environ. Microbiol. 1:53-73.
  20. Ramdeen, S. and Rampersad, S. N. 2013. Intraspecific Differentiation of Colletotrichum gloeosporioides sensu lato based on in silico multilocus PCR-RFLP fingerprinting. Mol. Biotechonol. 53:170-181. https://doi.org/10.1007/s12033-012-9509-8
  21. Sanders, G. M. and Korsten, L. 2000. Comparison of cross inoculation potential of South African avocado and mango isolates of Colletotrichum gloeosporioides. Microbiol. Res. 158:143-150.
  22. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesqueb, C. A. and Chenb, W. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad Sci. USA 109:6241-6246. https://doi.org/10.1073/pnas.1117018109
  23. Shin, J.-H., Han, J.-H., Lee, J. K. and Kim, K. S. 2014. Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathol. J. 30:397-406. https://doi.org/10.5423/PPJ.OA.08.2014.0078
  24. Sutton, B. C. 1992. The genus Glomerella and its anamorph Colletotrichum. In: Colletotrichum biology, pathology and control CAB International, eds. by J. A. Bailey and M. J. Jeger, pp. 1-26. Wallingford.
  25. Wharton, P. S. and Dieguez-Uribeondo, J. 2004. The biology of Colletotrichum acutatum. Anales Jard. Bot. Madrid. 61:3-22.
  26. Weir, B. S., Johnston, P. R. and Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73:115-180. https://doi.org/10.3114/sim0011
  27. Xie, L., Zhang, J. Z., Cai, L. and Hyde, K. D. 2010. Biology of Colletotrichum horii, the causal agent of persimmon anthracnose. Mycology 4:242-253.
  28. Zhang, J. Z., Hu, D. W. and Xu, T. 2005. Ultrastructure of infection of persimmon petiole by Collectotrichum gloeosporioides. Acta Phytopathol. Sinica. 35:434-441.

피인용 문헌

  1. Improvement and Effectiveness for Chemical Control Protocol of Sweet Persimmon Anthracnose Disease vol.19, pp.3, 2015, https://doi.org/10.7585/kjps.2015.19.3.312
  2. Investigation of disease occurrences and rapid diagnosis in grafted cactus 2017, https://doi.org/10.1007/s41348-017-0093-9
  3. Co-culturing of Fungal Strains Against Botrytis cinerea as a Model for the Induction of Chemical Diversity and Therapeutic Agents vol.8, 2017, https://doi.org/10.3389/fmicb.2017.00649
  4. treated with anti-resistance strategies pp.1526498X, 2018, https://doi.org/10.1002/ps.5072