DOI QR코드

DOI QR Code

Synthesis of Highly Concentrated ZnO Nanorod Sol by Sol-gel Method and their Applications for Inverted Organic Solar Cells

  • Kim, Solee (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Young Chai (Department of Chemical Engineering, Hanyang University) ;
  • Oh, Seong-Geun (Department of Chemical Engineering, Hanyang University)
  • 투고 : 2014.07.31
  • 심사 : 2014.10.13
  • 발행 : 2015.06.01

초록

The effects of the zinc oxide (ZnO) preparing process on the performance of inverted organic photovoltaic cells (OPVs) were explored. The morphology and size of ZnO nanoparticles were controlled, leading to more efficient charge collection from device and higher electron mobility compared with nanospheres. Nanosized ZnO particles were synthesized by using zinc acetate dihydrate and potassium hydroxide in methanol. Also, water was added into the reaction medium to control the morphology of ZnO nanocrystals from spherical particles to rods, and $NH_4OH$ was used to prevent the gelation of dispersion. Solution-processed ZnO thin films were deposited onto the ITO/glass substrate by using spin coating process and then ZnO films were used as an electron transport layer in inverted organic photovoltaic cells. The analyses were carried out by using TEM, FE-SEM, AFM, DLS, UV-Vis spectroscopy, current density-voltage characteristics and solar simulator.

키워드

참고문헌

  1. Tan, S., Chen, B., Sun, X., Fan, W., Kwok, H., Zhang, X. and Chua, S., "Blueshift of Optical Band Gap in ZnO Thin Films Grown by Metal-organic Chemical-vapor Deposition," J. Appl. Phys., 98, 013505(2005). https://doi.org/10.1063/1.1940137
  2. Pearton, S., Norton, D., Heo, K. Y. and Steiner, T., "Recent Progress in Processing and Properties of ZnO," Progr. in Mater. Sci., 50, 293-340(2005). https://doi.org/10.1016/j.pmatsci.2004.04.001
  3. Kim, H. Y., Jo, Y. K., Lee, K. Y., Lee, I. H. and Tak, Y. S., "Fabrication of ZnO Rod by Electrodeposition and Its Application to Dye Sensitized Solar Cell," Korean Chem. Eng. Res., 50(1), 162-166(2012). https://doi.org/10.9713/kcer.2012.50.1.162
  4. Fortunato, E. M., Barquinha, P. M., Pimentel, A., Goncalves, A. M., Marques, A. J., Pereira, L. M. and Martins, R. F., "Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature," Adv. Mater., 17, 590-594(2005). https://doi.org/10.1002/adma.200400368
  5. Bong, H., Lee, W. H., Lee, D. Y., Kim, B. J., Cho, J. H., Cho, K., "High-mobility Low-temperature ZnO Transistors with Low-voltage Operation," Appl. Phys. Lett., 96, 192115(2010). https://doi.org/10.1063/1.3428357
  6. Cetinorgu, E. and Goldsmith, S., "Chemical and Thermal Stability of the Characteristics of Filtered Vacuum Arc Deposited ZnO, $SnO_2$ and Zinc Stannate Thin Films," J. Phys. D: Appl. Phys., 40, 5220(2007). https://doi.org/10.1088/0022-3727/40/17/031
  7. Nair, S., Sasidharan, A., Rani, V. D., Menon, D., Nair, S., Manzoor, K. and Raina, S., "Role of Size Scale of ZnO Nanoparticles and Microparticles on Toxicity toward Bacteria and Osteoblast Cancer Cells," J. Mater. Sci.: Mater. in Medicine, 20, 235-241(2009).
  8. Gorla, C., Emanetoglu, N., Liang, S., Mayo, W., Lu, Y., Wraback, M. and Shen, H., "Structural, Optical, and Surface Acoustic Wave Properties of Epitaxial ZnO Films Grown on (0112) Sapphire by Metalorganic Chemical Vapor Deposition," J. Appl. Phys., 85, 2595-2602(1999). https://doi.org/10.1063/1.369577
  9. Ravirajan, P., Peiro, A. M., Nazeeruddin, M. K., Graetzel, M., Bradley, D. D., Durrant, J. R. and Nelson, J., "Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer," J. Phys. Chem. B, 110, 7635-7639(2006). https://doi.org/10.1021/jp0571372
  10. Krebs, F. C., Thomann, Y., Thomann, R. and Andreasen, J. W., "A Simple Nanostructured Polymer/ZnO Hybrid Solar Cell -Preparation and Operation in Air," Nanotechnology, 19, 424013 (2008). https://doi.org/10.1088/0957-4484/19/42/424013
  11. Boucle, J., Snaith, H. J. and Greenham, N. C., "Simple Approach to Hybrid Polymer/Porous Metal Oxide Solar Cells from Solutionprocessed ZnO Nanocrystals," J. Phys. Chem. C, 114, 3664-3674 (2010). https://doi.org/10.1021/jp909376f
  12. Chang, P. C., Fan, Z., Wang, D., Tseng, W. Y., Chiou, W. A., Hong, J. and Lu, J. G., "ZnO Nanowires Synthesized by Vapor Trapping CVD Method," Chem. Mater., 16, 5133-5137(2004). https://doi.org/10.1021/cm049182c
  13. Kong, X. Y., Ding, Y., Yang, R. and Wang, Z. L., "Single-crystal Nanorings Formed by Epitaxial Self-coiling of Polar Nanobelts," Science, 303, 1348-1351(2004). https://doi.org/10.1126/science.1092356
  14. Yang, J., Lin, Y. and Meng, Y., "Effects of Dye Ethching on the Morphology and Performance of ZnO Nanorod Dye-Sensitized Solar Cell," Korean J. Chem. Eng., 30(11), 2026-2029(2013). https://doi.org/10.1007/s11814-013-0133-5
  15. Ni, Y. H., Wei, X. W., Hong, J. M. and Ye, Y., "Hydrothermal Preparation and Optical Properties of ZnO Nanorods," Mater. Sci. and Eng. B, 121, 42-47(2005). https://doi.org/10.1016/j.mseb.2005.02.065
  16. Spanhel, L. and Anderson, M. A., "Semiconductor Clusters in the Sol-gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated Zinc Oxide Colloids," J. Am. Chem. Soc., 113, 2826-2833(1991). https://doi.org/10.1021/ja00008a004
  17. Wu, J. J. and Liu, S. C., "Low-temperature Growth of Well-aligned ZnO Nanorods by Chemical Vapor Deposition," Adv. Mater., 14, 215-218(2002). https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  18. Marotti, R., Guerra, D., Bello, C., Machado, G. and Dalchiele, E., "Bandgap Energy Tuning of Electrochemically Grown ZnO Thin Films by Thickness and Electrodeposition Potential," Solar Energy Mater. Sol. Cells, 82, 85-103(2004). https://doi.org/10.1016/j.solmat.2004.01.008
  19. Saad, L. and Riad, M., "Characterization of Various Zinc Oxide Catalysts and Their Activity in the Dehydration-Dehydrogenation of Isobutanol," J. Serb. Chem. Soc., 73(2008).
  20. Rodriguez, J. A., Jirsak, T., Dvorak, J., Sambasivan, S. and Fischer, D., "Reaction of $NO_2$ with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of $NO_3$," J. Phys. Chem. B, 104, 319-328(2000). https://doi.org/10.1021/jp993224g
  21. Liu, X., Wu, X., Cao, H. and Chang, R., "Growth Mechanism and Properties of ZnO Nanorods Synthesized by Plasma-enhanced Chemical Vapor Deposition," J. Appl. Phys., 95, 3141-3147(2004). https://doi.org/10.1063/1.1646440
  22. Beek, W. J., Wienk, M. M., Kemerink, M., Yang, X. and Janssen, R. A., "Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells," J. Phys. Chem. B, 109, 9505-9516(2005). https://doi.org/10.1021/jp050745x
  23. Li, C. Y., Wen, T. C., Lee, T. H., Guo, T. F., Lin, Y. C. and Hsu, Y. J., "An Inverted Polymer Photovoltaic Cell with Increased Air Stability Obtained by Employing Novel Hole/Electron Collecting Layers," J. Mater. Chem., 19, 1643-1647(2009). https://doi.org/10.1039/b815523b
  24. Sun, B. and Sirringhaus, H., "Solution-processed Zinc Oxide Fieldeffect Transistors Based on Self-assembly of Colloidal Nanorods," Nano Lett., 5, 2408-2413(2005). https://doi.org/10.1021/nl051586w
  25. Bacsa, R., Kihn, Y., Verelst, M., Dexpert, J., Bacsa, W. and Serp, P., "Large Scale Synthesis of Zinc Oxide Nanorods by Homogeneous Chemical Vapour Deposition and Their Characterisation," Surf. Coat. Technol., 201, 9200-9204(2007). https://doi.org/10.1016/j.surfcoat.2007.04.037
  26. Livage, J., Henry, M. and Sanchez, C., "Sol-gel Chemistry of Transition Metal Oxides," Prog. Solid State Chem., 18, 259-341(1988). https://doi.org/10.1016/0079-6786(88)90005-2
  27. Bu, I. Y., "Effect of $NH_4OH$ Concentration on P-type Doped ZnO Film by Solution Based Process," Appl. Surf. Sci., 257, 6107-6111(2011). https://doi.org/10.1016/j.apsusc.2011.02.011
  28. Sekine, N., Chou, C. H., Kwan, W. L. and Yang, Y., "ZnO Nanoridge Structure and its Application in Inverted Polymer Solar Cell," Organic Electronics, 10, 1473-1477(2009). https://doi.org/10.1016/j.orgel.2009.08.011
  29. Yin, Z., Zheng, Q., Chen, S. C. and Cai, D., "Interface Control of Semiconducting Metal Oxide Layers for Efficient and Stable Inverted Polymer Solar Cells with Open-Circuit Voltages over 1.0 Volt," ACS Appl. Mater. & Interf., 5, 9015-9025(2013). https://doi.org/10.1021/am402175m
  30. Olson, D. C., Lee, Y. J., White, M. S., Kopidakis, N., Shaheen, S. E., Ginley, D. S., Voigt, J. A. and Hsu, J. W., "Effect of Polymer Processing on the Performance of Poly(3-hexylthiophene)/ZnO Nanorod Photovoltaic Devices," J. Phys. Chem. C, 111, 16640-16645(2007). https://doi.org/10.1021/jp0757816
  31. Baxter, J. B. and Schmuttenmaer, C. A., "Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-resolved Terahertz Spectroscopy," J. Phys. Chem. B, 110, 25229-25239(2006). https://doi.org/10.1021/jp064399a

피인용 문헌

  1. Effect of ZnO nanoparticle morphology and post-treatment with zinc acetate on buffer layer in inverted organic photovoltaic cells vol.114, pp.None, 2015, https://doi.org/10.1016/j.solener.2015.01.020