DOI QR코드

DOI QR Code

3-메틸펜테인과 에틸렌 글리콜 모노프로필 에테르 및 에틸렌 글리콜 아이소프로필 에테르 혼합물에 대한 2성분계 등온 기-액 상 평형

Isothermal Vapor-liquid Equilibria for the Binary Mixtures of 3-Methylpentane with Ethylene Glycol Monopropyl Ether and Ethylene Glycol Isopropyl Ether

  • 형성훈 (서울대학교 화학생물공학부) ;
  • 장성현 (서울대학교 화학생물공학부) ;
  • 김화용 (서울대학교 화학생물공학부)
  • Hyeong, Seonghoon (School of Chemical & Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Jang, Sunghyun (School of Chemical & Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Kim, Hwayong (School of Chemical & Biological Engineering and Institute of Chemical Processes, Seoul National University)
  • 투고 : 2014.08.28
  • 심사 : 2014.12.31
  • 발행 : 2015.06.01

초록

본 연구에서는 3-Methylpentane을 포함하는 Ethylene glycol monopropyl ether ($C_3E_1$) 및 Ethylene glycol isopropyl ether ($iC_3E_1$) 계면활성제 혼합물에 대한 2성분계 기-액 상 평형을 서로 다른 온도 조건(303.15, 318.15, 333.15K)에서 측정 및 비교하였다. $C_3E_1$은 분자 내 수소결합과 분자 간 수소결합이 동시에 나타나는 자가 회합 성 물질이므로 상 평형 예측을 어렵게 하는 경향이 있다. 본 연구의 목적은 $C_3E_1$ 혼합물과 그 이성질체인 $iC_3E_1$ 혼합물의 상 평형을 각각 측정 및 비교함으로써, 자가 회합 성 물질의 이성질체가 상 평형에 어떠한 영향을 미치는지 알아보는 것이다. 측정된 시스템은 PR-WS-NRTL, PR-WS-UNIQUAC, 그리고 PR-WS-WILSON 모델을 이용하여 각각 계산하고 각 모델의 성능을 비교하였다. 계산에 사용된 모델은 대부분 좋은 결과를 보여주었으며, 특히 PR-WS-NRTL 모델이 가장 좋은 결과를 나타냈다. 또한 측정 시스템 간의 상 평형 차이가 크게 발생하지 않은 것으로 보아 자가 회합 성 물질의 이성질체가 상 평형에 끼치는 영향은 크지 않음을 알 수 있었다.

Isothermal vapor liquid equilibria for the binary system of 3-methylpentane with ethylene glycol monopropyl ether ($C_3E_1$) and ethylene glycol isopropyl ether ($iC_3E_1$) were measured at 303.15, 318.15, and 333.15K. In our previous work, phase equilibria for the binary system of $C_3E_1$ mixtures were investigated according to the chain length of alkane, alcohol or those isomer. But in this study, we discussed the different effect of $C_3E_1$ and its isomer, $iC_3E_1$, on the phase equilibria. The measured systems were correlated with a Peng-Robinson equation of state (PR EOS) combined with Wong-Sandler mixing rule for the vapor phase, and NRTL, UNIQUAC, and Wilson activity coefficient models for the liquid phase. All the measured systems showed good agreement with the correlation results. And it was found that the phase equilibria showed very little difference between the $iC_3E_1$ mixture system and the $C_3E_1$ mixture system.

키워드

참고문헌

  1. Davis, M. I. and Chacon, M., "Analysis and Interpretation of Excess Molar Properties of Amphiphile + Water Systems: Part 3. Excess Molar Volumes of Isopropoxyethanol + Water and Isobutoxyethanol + Water," Thermochim. Acta, 190(2), 259-265(1991). https://doi.org/10.1016/0040-6031(91)85252-D
  2. Lai, H.-H. and Chen, L.-J., "Liquid-Liquid Equilibrium Phase Diagram and Density of Three Water + Nonionic Surfactant $C_iE_j$ Binary Systems," J. Chem. Eng. Data, 44(2), 251-253(1999). https://doi.org/10.1021/je980138l
  3. Lee, H.-S. and Lee, H., "Liquid-Liquid Equilibria and Partitioningof o-Chlorophenol in Ethylene Glycol Monobutyl Ether + Water, Diethylene Glycol Monohexyl Ether + Water, and Poly(oxyethylene(4)) Lauryl Ether +Water," J. Chem. Eng. Data, 41(6), 1358-1360(1996). https://doi.org/10.1021/je9601164
  4. Oh, S. G., Kim, J. G. and Kim, J. D., "Phase Behavior and Solubilization of 1-hexanol in the Water-continuous Phases Containing Surface-active Compounds," Korean J. Chem. Eng., 4(1) 53-59 (1987). https://doi.org/10.1007/BF02698099
  5. Carmona, F. J., Bhethanabotla, V. R., Campbell, S. W., Gonzalez, J. A., Garcia de la Fuente, I. and Cobos, J. C., "Thermodynamic Properties of (n-alkoxyethanols + organic solvents). XII. Total Vapour Pressure Measurements for (n-hexane,n-heptane or cyclohexane + 2-methoxyethanol) at Different Temperatures," J. Chem. Thermodyn., 33(1), 47-59(2001). https://doi.org/10.1006/jcht.2000.0709
  6. Carmona, F. J., Gonzalez, J. A., Garcia de la Fuente, I., Cobos, J. C., Bhethanabotla, V. R. and Campbell, S. W., "Thermodynamic Properties of n-Alkoxyethanols + Organic Solvent Mixtures. XI. Total Vapor Pressure Measurements for n-Hexane, Cyclohexane or n-Heptane + 2-Ethoxyethanol at 303.15 and 323.15 K," J. Chem. Eng. Data, 45(4), 699-703(2000). https://doi.org/10.1021/je990292n
  7. Ramsauer, B., Neueder, R. and Kunz, W., "Isobaric Vapour-liquid Equilibria of Binary 1-propoxy-2-propanol Mixtures with Water and Alcohols at Reduced Pressure," Fluid Phase Equilib., 272(1-2) 84-92(2008). https://doi.org/10.1016/j.fluid.2008.06.022
  8. Jang, S., Shin, M. S., Lee, Y. and Kim, H., "Measurement and Correlation of (vapor + liquid) Equilibria for the {2-propoxyethanol (C3E1) + n-hexane} and the {2-propoxyethanol (C3E1) + n-heptane} Systems," J. Chem. Thermodyn., 41(1), 51-55(2009). https://doi.org/10.1016/j.jct.2008.07.024
  9. Lee, Y., Jang, S., Shin, M. S. and Kim, H., "Isobaric Vapor-liquid Equilibria for the n-hexane + 2-isopropoxyethanol and n-heptane + 2-isopropoxyethanol Systems," Fluid Phase Equilib., 276(1) 53-56(2009). https://doi.org/10.1016/j.fluid.2008.09.026
  10. Jang, S., Hyeong, S., Shin, M. S. and Kim, H., "Isobaric Vaporliquid Equilibria for the n-heptane + ethylene Glycol Monopropyl Ether and n-octane + ethylene Glycol Monopropyl Ether Systems," Fluid Phase Equilib., 298(2), 270-275(2010). https://doi.org/10.1016/j.fluid.2010.08.002
  11. Hyeong, S., Jang, S., Lee, C. J. and Kim, H., "Isobaric Vapor-Liquid Equilibria for the 1-Propanol + Ethylene Glycol Monopropyl Ether and 1-Butanol + Ethylene Glycol Monopropyl Ether Systems," J. Chem. Eng. Data, 56(12), 5028-5035(2011). https://doi.org/10.1021/je2008236
  12. Hyeong, S., Jang, S., Lee, K. and Kim, H., "Isobaric Vapor-Liquid Equilibria for the 2-Propanol + Ethylene Glycol Monopropyl Ether and 2-Butanol + Ethylene Glycol Monopropyl Ether Systems at 60 kPa, 80 kPa, and 100 kPa," J. Chem. Eng. Data, 57(6), 1860- 1866(2012). https://doi.org/10.1021/je3002255
  13. Hyeong, S., Jang, S., Lee, K. and Kim, H., "Isothermal Vapor-liquid Equilibria for the Binary Systems of Ethylene Glycol Monopropyl Ether with 2,2-dimethylbutane and 2,3-dimethylbutane," Korean J. Chem. Eng., 30(2), 434-439(2013). https://doi.org/10.1007/s11814-012-0129-6
  14. Peng, D. Y. and Robinson, D. B., "A New Two-Constant Equation of State," Ind. Eng. Chem. Fund., 15(1), 59-64(1976). https://doi.org/10.1021/i160057a011
  15. Wong, D. S. H. and Sandler, S. I., "A Theoretically Correct Mixing Rule for Cubic Equations of State," American Inst. Chem. Eng. J., 38(5), 671-680(1992). https://doi.org/10.1002/aic.690380505
  16. Renon, H. and Prausnitz, J. M., "Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures," American Inst. Chem. Eng. J., 14(1), 135-144(1968). https://doi.org/10.1002/aic.690140124
  17. Abrams, D. S. and Prausnitz, J. M., "Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems," American Inst. Chem. Eng. J., 21(1), 116-128(1975). https://doi.org/10.1002/aic.690210115
  18. Wilson, G. M., "Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing," J. Am. Chem. Soc. 86(2), 127-130(1964). https://doi.org/10.1021/ja01056a002
  19. "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results," NIST Technical Note 1297, 1994 Edition.
  20. "NIST Chemistry Webbook," NIST Standard Reference Database Number 69, National Institute of Standards and Technology (http://webbook.nist.gov/chemistry).
  21. "DIPPR 801 Database," Design Institute for Physical Property Data; American Institute of Chemical Engineers.
  22. Poling, B. E., Prausnitz, J. M. and O'connell, J. P., The properties of gases and liquids, 5th ed., McGrawHill, New York, NY(2001).