DOI QR코드

DOI QR Code

TiO2-SiO2 Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution

Ti-PCS 혼합용액의 전기방사를 통해 제조된 TiO2-SiO2 나노복합 섬유

  • Shin, Dong-Geun (Korea Institute of Ceramic Engineering and Technology) ;
  • Jin, Eun-Ju (Solar Ceramics Company) ;
  • Lee, Yoon-Joo (Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo-Tek (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Younghee (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo-Ryong (Korea Institute of Ceramic Engineering and Technology) ;
  • Riu, Doh-Hyung (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • Received : 2014.07.24
  • Accepted : 2014.09.04
  • Published : 2015.06.01

Abstract

Nanostructured $TiO_2-SiO_2$ materials have widely been used as anti-reflecting coating, optical-chemical sensors and catalysts because of their superior optical and thermal properties as well as chemical durability. Web type $SiO_2$ microfibers with nano-crystalline $TiO_2$ were prepared by electrospinning of Ti-PCS mixed solution and oxidation controlled heat-treatment, rather simple than sol-gel process. Nano-crystalline anatase phase were formed for the heat-treatment up to $1200^{\circ}C$ and they were finely dispersed in the amorphous $SiO_2$ matrix.

$TiO_2-SiO_2$ 나노복합소재는 자체가 화학적으로 안정할 뿐만 아니라 광학적, 열적 특성이 매우 우수하여 광화학센서, 촉매 등 다양한 분야에 적용되고 있다. 이러한 구조를 구현하는 방법으로 티타늄이 첨가된 폴리카보실란(PCS) 혼합용액을 전기방사한 후 이를 적절한 산화분위기에서 열처리하여 부직포상의 $TiO_2-SiO_2$ 나노복합섬유를 만들 수 있는데, 이는 기존의 졸겔공정에 의해 제조되는 섬유보다 더 쉽고 안정적인 방법이다. 공정 중 방사된 섬유를 산화분위기에서 $1200^{\circ}C$ 이상까지 열처리하게 되면 크리스토발라이트 기지조직 내에서 아나타제 나노결정상이 매우 균일하게 형성되었다. 또한, 열처리 후 섬유의 표면과 단면은 매우 치밀하고 매끈하였으며 10~20nm 크기의 아나타제 결정입자들이 내부에 균일하게 분포하였다.

Keywords

References

  1. Riedel, R., Mera, G., Hauser, R. and Klonczynski, A., "Silicon-based Polymer-Derived Ceramics: Synthesis Properties and Applications-A Review," Jap. J. Ceram. Soc., 114(6), 425-444(2003).
  2. Shin, D. G., Lee, Y. J., Kim, B. I., Kim, S. R., Kwon, W. T. and Kim, Y., "Trends in Preceramic Polymer Industries for Ultra-high Temperature Composites," Ceramic Korea(in Korean), 301(26), 87-97(2013).
  3. Riu, D. H., Shin, D. G., Park, E. B., Cho, K. Y. and Huh, S. H., "Trends in Development of SiC Fiber for the Aerospace," Ceramist( in Korean), 12(1), 71-82(2010).
  4. Ishikawa, T., "Advances in Inorganic Fibers," Adv. Polym. Sci., 178, 109-144(2005). https://doi.org/10.1007/b104208
  5. Shin, D. G., Riu, D. H., Kim, Y., Park, H. S. and Kim, H. E., "Characterization of SiC Fiber Derived from Polycarbosilanes with Controlled Molecular Weight," J. Kor. Ceram. Soc.(in Korean), 42(8), 593-598(2005). https://doi.org/10.4191/KCERS.2005.42.8.593
  6. Shin, D. G., Kong, E. B., Cho, K. Y., Kwon, W. T., Kim, Y., Kim, S. R., Hong, J. S. and Riu, D. H., "Nano-Structure Control of SiC Hollow Fiber Prepared from Polycarbosilane," J. Kor. Ceram. Soc.(in Korean), 50(4), 301-307(2013). https://doi.org/10.4191/kcers.2013.50.4.301
  7. Cao, F., Li, X. D., Peng, P., Feng, C. X., Wang, J. and Kim, D. P., "Structure Evolution and Associated Properties on Conversion from Si-C-O-Al Ceramic Fibers to Si-C-Al Fibers by Sintgering," J. Mater. Chem., 12, 606-610(2002). https://doi.org/10.1039/b106868g
  8. Shin, D. G., Cho, K. Y. Jin, E. J., Kim, Y., Kim, S. R., Kwon, W. T., Lee, Y. J., Hong, J. S. and Riu, D. H., "Tungsten Carbide-Silicon Carbide Nanocomposite Fibers Prepared from Tungsten Nanoparticle Dispersed Polycarbosilane by Electrospinning," J. Ceram. Proces. Res., 14(4), 463-467(2013).
  9. Ishikawa, T., "Photocatalytic Fiber with Gradient Surface Structure Produced from a Polycarbosilane and Its Applications," Int. J. Appl. Ceram. Technol., 1(1), 49-55(2004). https://doi.org/10.1111/j.1744-7402.2004.tb00154.x
  10. Jeong, J., Kwak, D. H., Oh, D. W., Park, D. M. and Yang, O. B., "Disinfection of E.coli in Drinking Water by $TiO_{2}$ Photocatalytic System," Korean Chem. Eng. Res., 50(1), 11-17(2012). https://doi.org/10.9713/kcer.2012.50.1.011
  11. Hashimoto, K., Irie, H. and Fujishima, A., "$TiO_2$ Photocatalysis: A Historical Overview and Future Prospects," Jap. J. Appl. Phys., 44(12), 8269-8285(2005). https://doi.org/10.1143/JJAP.44.8269
  12. http://cdn.intechopen.com/pdfs-wm/8645.pdf.
  13. Hyun, D. H., Lim, T. H. and Lee, S. W., "Fabrication and Photocatalytic Properties of $SiO_2$-$TiO_2$ Composite Nanofibers," J. Kor. Ind. Eng. Chem., 19(5), 554-558(2008).
  14. Ya, J., An, L., Liu, Z., Lei, E., Zhao, W., Zhao, D. and Liu, C., "Structural and Photoelectrochemical Characterization of $TiO_2$ Nanowire/nanotube Electrodes by Electrochemical Etching," Korean J. Chem. Eng., 29(6), 731-736(2012). https://doi.org/10.1007/s11814-011-0241-z
  15. Li, Y. and Kim, S. J., "Synthesis and Characterization of Nanotitania Particles Embedded in Mesoporous Silica with Both High Photocatalytic Activity and Adsorption Capability," J. Phys. Chem. B, 109, 12309-12315(2005). https://doi.org/10.1021/jp0512917
  16. Shin, D. G., Kong, E. B., Riu, D. H., Kim, Y., Park, H. S. and Kim, H. E., "Dense Polycrystalline SiC Fiber Derived from Aluminum-doped Polycarbosilane by One-pot Synthesis," J. Kor. Ceram. Soc., 44(7), 1-10(2007). https://doi.org/10.4191/KCERS.2007.44.1.001
  17. Shin, D. G., Riu, D. H. and Kim, H. E., "Web-type Silicon Carbide Fibers Prepared by the Electrospinning of Polycarbosilanes," J. Ceram. Proces. Res., 9(2), 209-214(2008).
  18. Shawon, J. and Sung, C., "Electrospinning of Polycarbonate Nanofibers with Solvent Mixtures THF and DMF," J. Mater. Sci., 39, 4605-4613(2004). https://doi.org/10.1023/B:JMSC.0000034155.93428.ea
  19. Lee, K. H., Kim, H. Y., La, Y. M., Lee, D. R. and Sung, N. H., "Influence of a Mixing Solvent with Tetrahydrofuran and N,N-Dimethylformamide on Electrospun Poly(vinylchloride) Nonwoven Mats," J. Polym. Sci. B, 40, 2259-2268(2002). https://doi.org/10.1002/polb.10293
  20. Hsu, C. M. and Shivkumar, S., "N,N-Dimethylformamide Additions to the Solution for the Electrospinning of Poly(e-caprolactone) Nanofibers," Macromol. Mater. Eng., 289, 334-340(2004). https://doi.org/10.1002/mame.200300224
  21. Shin, D. G., Cho, K. Y., Kim, Y., Kwon, W. T., Kim, S. R., Lee, Y. J. and Riu, D. H., "Fabrication of Nanoporous Silicon Carbide Fibres by Thermal Treatment," Adv. Appl. Ceram., 113(6), 341-345(2014). https://doi.org/10.1179/1743676114Y.0000000167
  22. Bouillon, E., Langlais, E., Pailler, R., Naslain, R., Curege, F., Huong, P. V., Sarthou, J. C., Delpuech, A., Laffon, C., Lagarde, P., Monthioux, M. and Oberlin, A., "Conversion Mechanism of a Polycarbosilane Precursor into an SiC Based Ceramic Material," J. Mater. Sci., 26(5), 1333-1345(1991). https://doi.org/10.1007/BF00544474
  23. Gupta, S. M. and Tripathi, M., "A Review of $TiO_2$ Nanoparticles," Phy. Chem., 56(16), 1639-1657(2011).
  24. Nuansing, W., Ninmuang, S., Jarernboon, W., Maensiri, S. and Seraphin, S., "Structural Characterization and Morphology of Electrospun $TiO_2$ Nanofibers," Mater. Sci. & Eng. B, 131, 147-155(2006). https://doi.org/10.1016/j.mseb.2006.04.030
  25. Park, S. H., Kim, C. and Yang, K. S., "Preparation of Carbonized Fiber Web from Electrospinning of Isotropic Pitch," Synth. Met., 143, 175-179(2004). https://doi.org/10.1016/j.synthmet.2003.11.006

Cited by

  1. 전기방사를 이용한 탄소나노튜브 폴리머 공기정화 멤브레인 개발 vol.55, pp.1, 2017, https://doi.org/10.9713/kcer.2017.55.1.68
  2. 초고온복합소재용 프리세라믹폴리머 합성 및 응용기술 vol.30, pp.2, 2015, https://doi.org/10.7234/composres.2017.30.2.102