DOI QR코드

DOI QR Code

The effect of photodynamic therapy on Aggregatibacter actinomycetemcomitans attached to surface-modified titanium

  • Cho, Kyungwon (Department of Periodontology, Research Institute for Oral Sciences, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Si Young (Department of Oral Microbiology, Research Institute for Oral Sciences, College of Dentistry, Gangneung-Wonju National University) ;
  • Chang, Beom-Seok (Department of Periodontology, Research Institute for Oral Sciences, College of Dentistry, Gangneung-Wonju National University) ;
  • Um, Heung-Sik (Department of Periodontology, Research Institute for Oral Sciences, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Jae-Kwan (Department of Periodontology, Research Institute for Oral Sciences, College of Dentistry, Gangneung-Wonju National University)
  • Received : 2015.02.09
  • Accepted : 2015.03.20
  • Published : 2015.04.30

Abstract

Purpose: The purpose of this study was to evaluate the effect of photodynamic therapy (PDT) using erythrosine and a green light emitting diode (LED) light source on biofilms of Aggregatibacter actinomycetemcomitans attached to resorbable blasted media (RBM) and sandblasted, large-grit, acid-etched (SLA) titanium surfaces in vitro. Methods: RBM and SLA disks were subdivided into four groups, including one control group and three test groups (referred to as E0, E30, E60), in order to evaluate the effect of PDT on each surface. The E0 group was put into $500{\mu}L$ of $20{\mu}M$ erythrosine for 60 seconds without irradiation, the E30 group was put into erythrosine for 60 seconds and was then irradiated with a LED for 30 seconds, and the E60 group was put into erythrosine for 60 seconds and then irradiated with a LED for 60 seconds. After PDT, sonication was performed in order to detach the bacteria, the plates were incubated under anaerobic conditions on brucella blood agar plates for 72 hours at $37^{\circ}C$, and the number of colony-forming units (CFUs) was determined. Results: Significant differences were found between the control group and the E30 and E60 groups (P<0.05). A significantly lower quantity of CFU/mL was found in the E30 and E60 groups on both titanium disk surfaces. In confocal scanning laser microscopy images, increased bacterial death was observed when disks were irradiated for a longer period of time. Conclusions: These findings suggest that PDT using erythrosine and a green LED is effective in reducing the viability of A. actinomycetemcomitans attached to surface-modified titanium in vitro.

Keywords

References

  1. Takasaki AA, Aoki A, Mizutani K, Schwarz F, Sculean A, Wang CY, et al. Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol 2000 2009;51: 109-40. https://doi.org/10.1111/j.1600-0757.2009.00302.x
  2. Mombelli A, Lang NP. The diagnosis and treatment of peri-implantitis. Periodontol 2000 1998;17:63-76. https://doi.org/10.1111/j.1600-0757.1998.tb00124.x
  3. Rams TE, Link CC Jr. Microbiology of failing dental implants in humans: electron microscopic observations. J Oral Implantol 1983; 11:93-100.
  4. Mombelli A, van Oosten MA, Schurch E Jr, Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 1987;2:145-51. https://doi.org/10.1111/j.1399-302X.1987.tb00298.x
  5. Becker W, Becker BE, Newman MG, Nyman S. Clinical and microbiologic findings that may contribute to dental implant failure. Int J Oral Maxillofac Implants 1990;5:31-8.
  6. Sanz M, Newman MG, Nachnani S, Holt R, Stewart R, Flemmig T. Characterization of the subgingival microbial flora around endosteal sapphire dental implants in partially edentulous patients. Int J Oral Maxillofac Implants 1990;5:247-53.
  7. Alcoforado GA, Rams TE, Feik D, Slots J. Microbial aspects of failing osseointegrated dental implants in humans. J Parodontol 1991; 10:11-8.
  8. Sbordone L, Barone A, Ramaglia L, Ciaglia RN, Iacono VJ. Antimicrobial susceptibility of periodontopathic bacteria associated with failing implants. J Periodontol 1995;66:69-74. https://doi.org/10.1902/jop.1995.66.1.69
  9. Mombelli A, Marxer M, Gaberthuel T, Grunder U, Lang NP. The microbiota of osseointegrated implants in patients with a history of periodontal disease. J Clin Periodontol 1995;22:124-30.
  10. Persson LG, Berglundh T, Lindhe J, Sennerby L. Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clin Oral Implants Res 2001; 12:595-603. https://doi.org/10.1034/j.1600-0501.2001.120607.x
  11. Lang NP, Wilson TG, Corbet EF. Biological complications with dental implants: their prevention, diagnosis and treatment. Clin Oral Implants Res 2000;11 Suppl 1:146-55. https://doi.org/10.1034/j.1600-0501.2000.011S1146.x
  12. Matarasso S, Quaremba G, Coraggio F, Vaia E, Cafiero C, Lang NP. Maintenance of implants: an in vitro study of titanium implant surface modifications subsequent to the application of different prophylaxis procedures. Clin Oral Implants Res 1996;7:64-72. https://doi.org/10.1034/j.1600-0501.1996.070108.x
  13. Kreisler M, Kohnen W, Marinello C, Gotz H, Duschner H, Jansen B, et al. Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol 2002;73:1292-8. https://doi.org/10.1902/jop.2002.73.11.1292
  14. Takasaki AA, Aoki A, Mizutani K, Kikuchi S, Oda S, Ishikawa I. Er:YAG laser therapy for peri-implant infection: a histological study. Lasers Med Sci 2007;22:143-57. https://doi.org/10.1007/s10103-006-0430-x
  15. Kreisler M, Gotz H, Duschner H. Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 2002; 17:202-11.
  16. Mouhyi J, Sennerby L, Nammour S, Guillaume P, Van Reck J. Tem perature increases during surface decontamination of titanium implants using CO2 laser. Clin Oral Implants Res 1999;10:54-61. https://doi.org/10.1034/j.1600-0501.1999.100107.x
  17. Oyster DK, Parker WB, Gher ME. CO2 lasers and temperature changes of titanium implants. J Periodontol 1995;66:1017-24. https://doi.org/10.1902/jop.1995.66.12.1017
  18. Romanos GE, Everts H, Nentwig GH. Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol 2000;71:810-5. https://doi.org/10.1902/jop.2000.71.5.810
  19. Haas R, Dortbudak O, Mensdorff-Pouilly N, Mailath G. Elimination of bacteria on different implant surfaces through photosensitization and soft laser. An in vitro study. Clin Oral Implants Res 1997;8:249-54. https://doi.org/10.1034/j.1600-0501.1997.080401.x
  20. Tawakoli PN, Al-Ahmad A, Hoth-Hannig W, Hannig M, Hannig C. Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig 2013;17:841-50. https://doi.org/10.1007/s00784-012-0792-3
  21. Mombelli A. Etiology, diagnosis, and treatment considerations in peri-implantitis. Curr Opin Periodontol 1997;4:127-36.
  22. Dortbudak O, Haas R, Bernhart T, Mailath-Pokorny G. Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis. Clin Oral Implants Res 2001;12: 104-8. https://doi.org/10.1034/j.1600-0501.2001.012002104.x
  23. Burgers R, Gerlach T, Hahnel S, Schwarz F, Handel G, Gosau M. In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin Oral Implants Res 2010;21:156-64. https://doi.org/10.1111/j.1600-0501.2009.01815.x
  24. Song KH, Kim IK, Jang KS, Kim KN, Choi JU. Histomorphometric study of dental implants with RBM and SLA surface in the rabbit tibia. J Korean Assoc Oral Maxillofac Surg 2006;32:514-23.
  25. Marotti J, Tortamano P, Cai S, Ribeiro MS, Franco JE, de Campos TT. Decontamination of dental implant surfaces by means of photodynamic therapy. Lasers Med Sci 2013;28:303-9. https://doi.org/10.1007/s10103-012-1148-6
  26. Shibli JA, Martins MC, Nociti FH Jr, Garcia VG, Marcantonio E Jr. Treatment of ligature-induced peri-implantitis by lethal photosensitization and guided bone regeneration: a preliminary histologic study in dogs. J Periodontol 2003;74:338-45. https://doi.org/10.1902/jop.2003.74.3.338
  27. Shibli JA, Martins MC, Theodoro LH, Lotufo RF, Garcia VG, Marcantonio EJ. Lethal photosensitization in microbiological treatment of ligature-induced peri-implantitis: a preliminary study in dogs. J Oral Sci 2003;45:17-23. https://doi.org/10.2334/josnusd.45.17
  28. Shibli JA, Martins MC, Ribeiro FS, Garcia VG, Nociti FH Jr, Marcantonio E Jr. Lethal photosensitization and guided bone regeneration in treatment of peri-implantitis: an experimental study in dogs. Clin Oral Implants Res 2006;17:273-81. https://doi.org/10.1111/j.1600-0501.2005.01167.x
  29. Haas R, Baron M, Dortbudak O, Watzek G. Lethal photosensitization, autogenous bone, and e-PTFE membrane for the treatment of peri-implantitis: preliminary results. Int J Oral Maxillofac Implants 2000;15:374-82.
  30. Begue WJ, Bard RC, Koehne GW. Microbial inhibition by erythrosin. J Dent Res 1966;45:1464-7. https://doi.org/10.1177/00220345660450053401
  31. Baab DA, Broadwell AH, Williams BL. A comparison of antimicrobial activity of four disclosant dyes. J Dent Res 1983;62:837-41. https://doi.org/10.1177/00220345830620071601
  32. Marsh PD, Bevis RA, Newman HN, Hallsworth AS, Robinson C, Weatherell JA, et al. Antibacterial activity of some plaque-disclosing agents and dyes. Caries Res 1989;23:348-50. https://doi.org/10.1159/000261205
  33. Wood S, Metcalf D, Devine D, Robinson C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 2006;57:680-4. https://doi.org/10.1093/jac/dkl021
  34. Metcalf D, Robinson C, Devine D, Wood S. Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother 2006;58: 190-2. https://doi.org/10.1093/jac/dkl205
  35. Lee SY, Chang BS, Um HS, Ma DS. Comparison of photodynamic bactericidal effects of erythrosine against Streptococcus mutans and Streptococcus sobrinus by different wavelength of LED lights. J Korean Acad Oral Health 2012;36:20-5.
  36. Qin Y, Luan X, Bi L, He G, Bai X, Zhou C, et al. Toluidine blue-mediated photoinactivation of periodontal pathogens from supragingival plaques. Lasers Med Sci 2008;23:49-54. https://doi.org/10.1016/j.mla.2008.02.003
  37. Geminiani A, Caton JG, Romanos GE. Temperature change during non-contact diode laser irradiation of implant surfaces. Lasers Med Sci 2012;27:339-42. https://doi.org/10.1007/s10103-010-0876-8
  38. Eriksson RA, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg 1984;42:705-11. https://doi.org/10.1016/0278-2391(84)90417-8

Cited by

  1. Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants vol.10, pp.None, 2015, https://doi.org/10.2147/ijn.s92110
  2. Effect of photodynamic therapy adjunct to scaling and root planing in periodontitis patients: A randomized clinical trial vol.61, pp.4, 2015, https://doi.org/10.1111/adj.12409
  3. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections vol.9, pp.None, 2015, https://doi.org/10.3389/fmicb.2018.01299
  4. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention vol.4, pp.12, 2015, https://doi.org/10.1016/j.heliyon.2018.e01067
  5. Biological Effects of Light-Emitting Diodes Curing Unit on MDPC-23 Cells and Lipopolysaccharide Stimulated MDPC-23 Cells vol.19, pp.1, 2015, https://doi.org/10.17135/jdhs.2019.19.1.39
  6. Blue photosensitizers for aPDT eliminate Aggregatibacter actinomycetemcomitans in the absence of light: An in vitro study vol.194, pp.None, 2019, https://doi.org/10.1016/j.jphotobiol.2019.03.005
  7. Inflammatory Effect of Light-Emitting Diodes Curing Light Irradiation on Raw264.7 Macrophage vol.19, pp.2, 2015, https://doi.org/10.17135/jdhs.2019.19.2.133
  8. Antimicrobial Capacity and Surface Alterations Using Photodynamic Therapy and Light Activated Disinfection on Polymer-Infiltrated Ceramic Material Contaminated with Periodontal Bacteria vol.13, pp.11, 2020, https://doi.org/10.3390/ph13110350
  9. Design of Photosensitizing Agents for Targeted Antimicrobial Photodynamic Therapy vol.25, pp.22, 2020, https://doi.org/10.3390/molecules25225239
  10. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery vol.180, pp.None, 2015, https://doi.org/10.1016/j.addr.2021.114037