밀도범함수이론을 이용한 프로톤 전도성 다결정 $BaZrO_3$ 고체산화물 연료전지의 프로톤 전도도 연구

  • 김영철 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김지수 (한국기술교육대학교 에너지신소재화학공학부)
  • Published : 2015.03.31

Abstract

Keywords

References

  1. A. Raval and V. Ramanathan, "Observational Determination of the Greenhouse effect," Nature 342 758-761 (1989). https://doi.org/10.1038/342758a0
  2. S. Shafiee, E. Topal, "When will Fossil fuel Reserves be Diminished?" Energy Policy 37 [1] 181-189 (2009). https://doi.org/10.1016/j.enpol.2008.08.016
  3. R. O'Hayre, S.-W. Cha, W. Colella, F.B. Prinz, "Fuel Cell Fundamentals," 2nd Ed, Wiley (2009).
  4. R.M. Ormerod, "Solid Oxide Fuel Cells," Chem. Soc. Rev., 32 17-28 (2003). https://doi.org/10.1039/b105764m
  5. P. Costamagna, S. Srinivasan, "Quantum Jumps in the PEMPC Science and Technology from the 1960s to the year 2000: Part I. Fundamental Scientific Aspects," J. Power Sources, 102 [1-2] 242-252 (2001). https://doi.org/10.1016/S0378-7753(01)00807-2
  6. S.P.S. Badwal, F.T. Ciacchi, D. Milosevic, "Scandia-zirconia Electrolytes for Intermediate Temperature solid oxide fuel cell Operation," Solid State Ionics, 136-137, 91-99 (2000). https://doi.org/10.1016/S0167-2738(00)00356-8
  7. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, "Activity Benchmarks and Requirements for Pt, Pt-alloy, and not-Pt Oxygen Reduction Catalysts for PEMFC," Appl. Calalysis B, 56 9-35 (2005). https://doi.org/10.1016/j.apcatb.2004.06.021
  8. T. Takahashi and H. Iwahara, "Proton Conduction in Perovskite type Oxide Solid Solution," Chim. Miner. 17 243-253 (1980).
  9. H. Iwahara, T. Esaka, H. Uchida, N. Maeda "Proton Conduction in Sintered Oxides and its Application to Steam Electrolysis for Hydrogen Production," Solid State Ionics, 3-4, 359-363 (1981). https://doi.org/10.1016/0167-2738(81)90113-2
  10. K.D. Kreuer, "Proton-conducting Oxides," Annu. Rev. Mater. Res. 3 333-359 (2003).
  11. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki, "Protonic Conduction in Calcium, Strontium and Barium Zirconates," Solid State Ionics, 61 65-69 (1993). https://doi.org/10.1016/0167-2738(93)90335-Z
  12. T. Yajima, H. Suzuki, T. Yogo, and H. Iwahara, "Protonic Conduction in $SrZrO_3$-Based Oxides," Solid State Ionics, 51 101-107 (1992). https://doi.org/10.1016/0167-2738(92)90351-O
  13. K.D. Kreuer, "Aspects of the Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskite-Type Oxides," Solid State Ionics, 125 285-302 (1999). https://doi.org/10.1016/S0167-2738(99)00188-5
  14. P. Babilo and S.M. Haile. "Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO," J. Am. Ceram. Soc., 88 [9] 2362-68 (2005). https://doi.org/10.1111/j.1551-2916.2005.00449.x
  15. K.H. Ryu and S.M. Haile, "Chemical Stability and Proton Conductivity of Doped $BaCeO_3-BaZrO_3$ Solid Solutions," Solid State Ionics, 125 355-367 (1999). https://doi.org/10.1016/S0167-2738(99)00196-4
  16. T. Schober and H.G. Bohn, "Water Vapor Solubility and Electrochemical Characterization of the High Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$," Solid State Ionics, 127 351-360 (2000). https://doi.org/10.1016/S0167-2738(99)00283-0
  17. M.P. Benediksson, "A Theoretical Study of Doping and the Hydration Process of Barium Zirconate," Ph. D. thesis, Chalmers university of technology (2013).
  18. F. Iguchi, N. Stata, and H. Yugami, "Proton Transport Properties at the Grain Boundary of Barium Zirconate Based Proton Conductors for Intermediate Temperature Operating SOFC," J. Mater. Chem. 20 6265-6270 (2010). https://doi.org/10.1039/c0jm00443j
  19. M.E. Bjorkten, P.G. Sundell, and G. Wahnstrom, "Structure and Thermodynamic Stability of Hydrogen interstitials in $BaZrO_3$ Perovskite Oxide from Density Functional Calculations," Faraday Discuss. 134 247-265 (2007). https://doi.org/10.1039/B602081J
  20. J.-H. Yang, "Analysis for Functional Materials Using Density Functional theory: Grain Boundaries of Barium Zirconate and Cerate, and Atomic Layer Deposition of Diisopropylaminosilane," MS thesis, KoreaTech (2013).
  21. D.-H Kim, B.-K. Kim and Y.-C. Kim, "Interaction Effect of Protons on Their Migration in Bulk Undoped Barium Zirconate Using Density Functional Theory," Jpn. J. Appl. Phys. 51 09MA01-4 (2013).
  22. C. Kjolseth, H. Fjeld, O. Prytz, P.I. Dahl, C. Estournes, R. Haugsrud, T. Norby, "Space-charge Theory Applied to the Grain Boundary Impedance of Proton Conducting $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$," Solid State Ionics, 181 268-275 (2010). https://doi.org/10.1016/j.ssi.2010.01.014
  23. F. Iguchi, T. Tsurui, N. Sata, Y. Nagao, and H. Yugami, "The Relationship Between Chemical Composition Distributions and Specific Grain Boundary Conductivity in Y-doped $BaZrO_3$ Proton Conductors," Solid State Ionics, 180 563-568 (2009). https://doi.org/10.1016/j.ssi.2008.12.006
  24. A. Lindman, E.E. Helgee, J. Nyman, and G.Wahns trom, "Theoretical Modeling of Defect Segregation and Space-charge Formation in the $BaZrO_3$ (210)[001] Tilt grain Boundary," Solid State Ionics 252 121-125 (2013). https://doi.org/10.1016/j.ssi.2013.04.008
  25. J.-S. Kim, J.-H. Yang, B.-K. Kim, and Y.-C. Kim, "Study of ${\Sigma}3$ $BaZrO_3$ (210)[001] Tilt Grain Boundaries Using Density Functional Theory and a Space Charge Layer Model," J. Ceram. Soc. Jpn., accepted (2015).
  26. D.-H Kim, B.-K. Kim, and Y.-C. Kim, "Effect of zinc oxide as a Sintering Aid on Proton Migration Across ${\Sigma}5$ (310)/[001] Tilt Grain Boundary of Barium Zirconate," J. Electroceram. 30 19-23 (2013). https://doi.org/10.1007/s10832-012-9697-4
  27. J.-S. Kim, J.-H. Yang, B.-K. Kim, and Y.-C. Kim "Proton Conduction at BaO-terminated (001) $BaZrO_3$ Surface by Using Density Functional Theory," Solid State Ionics, accepted (2015).
  28. S.B.C. Duval, P. Holtappels, U.F. Vogt, E. Pomjakushina, K. Conder, U. Stimming, T. Graule, "Electrical Conductivity of the Proton Conductor $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$ Obtained by High Temperature Annealing," Solid State Ionics, 178 25-26, 1437-1441 (2007).
  29. E. Fabbri, D. Pergolesi, and E. Treversa, "Materials Challenges Toward Proton-conducting Oxide Fuel Cells: a Critical Review," Chem. Soc. Rev, 39 4355-4369 (2010). https://doi.org/10.1039/b902343g