References
- A. Raval and V. Ramanathan, "Observational Determination of the Greenhouse effect," Nature 342 758-761 (1989). https://doi.org/10.1038/342758a0
- S. Shafiee, E. Topal, "When will Fossil fuel Reserves be Diminished?" Energy Policy 37 [1] 181-189 (2009). https://doi.org/10.1016/j.enpol.2008.08.016
- R. O'Hayre, S.-W. Cha, W. Colella, F.B. Prinz, "Fuel Cell Fundamentals," 2nd Ed, Wiley (2009).
- R.M. Ormerod, "Solid Oxide Fuel Cells," Chem. Soc. Rev., 32 17-28 (2003). https://doi.org/10.1039/b105764m
- P. Costamagna, S. Srinivasan, "Quantum Jumps in the PEMPC Science and Technology from the 1960s to the year 2000: Part I. Fundamental Scientific Aspects," J. Power Sources, 102 [1-2] 242-252 (2001). https://doi.org/10.1016/S0378-7753(01)00807-2
- S.P.S. Badwal, F.T. Ciacchi, D. Milosevic, "Scandia-zirconia Electrolytes for Intermediate Temperature solid oxide fuel cell Operation," Solid State Ionics, 136-137, 91-99 (2000). https://doi.org/10.1016/S0167-2738(00)00356-8
- H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, "Activity Benchmarks and Requirements for Pt, Pt-alloy, and not-Pt Oxygen Reduction Catalysts for PEMFC," Appl. Calalysis B, 56 9-35 (2005). https://doi.org/10.1016/j.apcatb.2004.06.021
- T. Takahashi and H. Iwahara, "Proton Conduction in Perovskite type Oxide Solid Solution," Chim. Miner. 17 243-253 (1980).
- H. Iwahara, T. Esaka, H. Uchida, N. Maeda "Proton Conduction in Sintered Oxides and its Application to Steam Electrolysis for Hydrogen Production," Solid State Ionics, 3-4, 359-363 (1981). https://doi.org/10.1016/0167-2738(81)90113-2
- K.D. Kreuer, "Proton-conducting Oxides," Annu. Rev. Mater. Res. 3 333-359 (2003).
- H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki, "Protonic Conduction in Calcium, Strontium and Barium Zirconates," Solid State Ionics, 61 65-69 (1993). https://doi.org/10.1016/0167-2738(93)90335-Z
-
T. Yajima, H. Suzuki, T. Yogo, and H. Iwahara, "Protonic Conduction in
$SrZrO_3$ -Based Oxides," Solid State Ionics, 51 101-107 (1992). https://doi.org/10.1016/0167-2738(92)90351-O - K.D. Kreuer, "Aspects of the Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskite-Type Oxides," Solid State Ionics, 125 285-302 (1999). https://doi.org/10.1016/S0167-2738(99)00188-5
- P. Babilo and S.M. Haile. "Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO," J. Am. Ceram. Soc., 88 [9] 2362-68 (2005). https://doi.org/10.1111/j.1551-2916.2005.00449.x
-
K.H. Ryu and S.M. Haile, "Chemical Stability and Proton Conductivity of Doped
$BaCeO_3-BaZrO_3$ Solid Solutions," Solid State Ionics, 125 355-367 (1999). https://doi.org/10.1016/S0167-2738(99)00196-4 -
T. Schober and H.G. Bohn, "Water Vapor Solubility and Electrochemical Characterization of the High Temperature Proton Conductor
$BaZr_{0.9}Y_{0.1}O_{2.95}$ ," Solid State Ionics, 127 351-360 (2000). https://doi.org/10.1016/S0167-2738(99)00283-0 - M.P. Benediksson, "A Theoretical Study of Doping and the Hydration Process of Barium Zirconate," Ph. D. thesis, Chalmers university of technology (2013).
- F. Iguchi, N. Stata, and H. Yugami, "Proton Transport Properties at the Grain Boundary of Barium Zirconate Based Proton Conductors for Intermediate Temperature Operating SOFC," J. Mater. Chem. 20 6265-6270 (2010). https://doi.org/10.1039/c0jm00443j
-
M.E. Bjorkten, P.G. Sundell, and G. Wahnstrom, "Structure and Thermodynamic Stability of Hydrogen interstitials in
$BaZrO_3$ Perovskite Oxide from Density Functional Calculations," Faraday Discuss. 134 247-265 (2007). https://doi.org/10.1039/B602081J - J.-H. Yang, "Analysis for Functional Materials Using Density Functional theory: Grain Boundaries of Barium Zirconate and Cerate, and Atomic Layer Deposition of Diisopropylaminosilane," MS thesis, KoreaTech (2013).
- D.-H Kim, B.-K. Kim and Y.-C. Kim, "Interaction Effect of Protons on Their Migration in Bulk Undoped Barium Zirconate Using Density Functional Theory," Jpn. J. Appl. Phys. 51 09MA01-4 (2013).
-
C. Kjolseth, H. Fjeld, O. Prytz, P.I. Dahl, C. Estournes, R. Haugsrud, T. Norby, "Space-charge Theory Applied to the Grain Boundary Impedance of Proton Conducting
$BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$ ," Solid State Ionics, 181 268-275 (2010). https://doi.org/10.1016/j.ssi.2010.01.014 -
F. Iguchi, T. Tsurui, N. Sata, Y. Nagao, and H. Yugami, "The Relationship Between Chemical Composition Distributions and Specific Grain Boundary Conductivity in Y-doped
$BaZrO_3$ Proton Conductors," Solid State Ionics, 180 563-568 (2009). https://doi.org/10.1016/j.ssi.2008.12.006 -
A. Lindman, E.E. Helgee, J. Nyman, and G.Wahns trom, "Theoretical Modeling of Defect Segregation and Space-charge Formation in the
$BaZrO_3$ (210)[001] Tilt grain Boundary," Solid State Ionics 252 121-125 (2013). https://doi.org/10.1016/j.ssi.2013.04.008 -
J.-S. Kim, J.-H. Yang, B.-K. Kim, and Y.-C. Kim, "Study of
${\Sigma}3$ $BaZrO_3$ (210)[001] Tilt Grain Boundaries Using Density Functional Theory and a Space Charge Layer Model," J. Ceram. Soc. Jpn., accepted (2015). -
D.-H Kim, B.-K. Kim, and Y.-C. Kim, "Effect of zinc oxide as a Sintering Aid on Proton Migration Across
${\Sigma}5$ (310)/[001] Tilt Grain Boundary of Barium Zirconate," J. Electroceram. 30 19-23 (2013). https://doi.org/10.1007/s10832-012-9697-4 -
J.-S. Kim, J.-H. Yang, B.-K. Kim, and Y.-C. Kim "Proton Conduction at BaO-terminated (001)
$BaZrO_3$ Surface by Using Density Functional Theory," Solid State Ionics, accepted (2015). -
S.B.C. Duval, P. Holtappels, U.F. Vogt, E. Pomjakushina, K. Conder, U. Stimming, T. Graule, "Electrical Conductivity of the Proton Conductor
$BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$ Obtained by High Temperature Annealing," Solid State Ionics, 178 25-26, 1437-1441 (2007). - E. Fabbri, D. Pergolesi, and E. Treversa, "Materials Challenges Toward Proton-conducting Oxide Fuel Cells: a Critical Review," Chem. Soc. Rev, 39 4355-4369 (2010). https://doi.org/10.1039/b902343g