밀도범함수론과 강유전/다강체 연구에의 응용

  • 장현명 (포스텍 첨단재료과학부 및 신소재공학과)
  • Published : 2015.03.31

Abstract

Keywords

References

  1. Sol Wieder, The Foundations of Quantum Theory (Academic Press, Inc., Orlando, Florida. 1973), Chapter 3.
  2. P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics (Oxford University Press, 3rd ed., 1997), Chapter 9.
  3. W. Kohn and L. J. Sham, "Self-consistent Equations including Exchange and Correlation Effects," Phys. Rev., 140 A1133-38 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  4. Jose M. Soler et al., "The SIESTA Method for ab initio Order-N Materials Simulation," J. Phys.: Condens. Matter., 14 2745-79 (2002). https://doi.org/10.1088/0953-8984/14/11/302
  5. P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev., 136 B864-71 (1964). https://doi.org/10.1103/PhysRev.136.B864
  6. Richard M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, (2004).
  7. J. P. Perdew and A. Zunger, "Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems," Phys. Rev. B 23, 5048-79 (1981). https://doi.org/10.1103/PhysRevB.23.5048
  8. S. Vosko, L. Wilk, and M. Nusair, "Accurate Spin-dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis," Can. J. Phys. 58 1200-11 (1983).
  9. A. I. Liechtenstein et al., "Density-Functional Theory and Strong Interactions: Orbital Ordering to Mott-Hubbard Insulators," Phys. Rev. B 52 R5467-R70 (1995). https://doi.org/10.1103/PhysRevB.52.R5467
  10. S. L. Dudarev et al., "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: an LSDA+U Study," Phys. Rev. B 57 1505-09 (1998). https://doi.org/10.1103/PhysRevB.57.1505
  11. J. Heyd, G. E. Scuseria, and M. Ernzerhof, "Hybrid Functionals based on a Screened Coulomb Potential," J. Chem. Phys. 118 8207-15 (2003). https://doi.org/10.1063/1.1564060
  12. A. Zunger and M. L. Cohen, "First-Principles Nonlocal-Pseudopotential Approach in the Density-Functional Formalism: Development and Application to Atoms," Phys. Rev. B 18 5449-72 (1978). https://doi.org/10.1103/PhysRevB.18.5449
  13. M. Fuchs and M. Scheffler, "Ab Initio Pseudopotentials for Electronic Structure Calculations of Poly-atomic Systems using Density-Functional Theory," Comput. Phys. Commun. 119 67-98 (1999). https://doi.org/10.1016/S0010-4655(98)00201-X
  14. G. B. Bachelet, D. R. Hamann, and M. Schluter, "Pseudopotentials That Work: From H to Pu," Phys. Rev. B 26 4199-4228 (1982). https://doi.org/10.1103/PhysRevB.26.4199
  15. G. B. Bachlet and M. Schluter," Relativistic Norm-conserving Pseudo potentials," Phys. Rev. B 25 2103-08 (1982). https://doi.org/10.1103/PhysRevB.25.2103
  16. N. Troullier and J. L. Martins, "Efficient Pseudopotentials for Plane-Wave Calculations," Phys. Rev. B 43 1993-2006 (1991). https://doi.org/10.1103/PhysRevB.43.1993
  17. L. Kleinman and D. M. Bylander, "Efficacious Form for Model Pseudopotentials," Phys. Rev. Lett. 48 1425-28 (1982). https://doi.org/10.1103/PhysRevLett.48.1425
  18. D. Vanderbilt, "Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism," Phys. Rev. B 41 7892-95 (1990). https://doi.org/10.1103/PhysRevB.41.7892
  19. K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, "Car-Parrinello Molecular Dynamics with Vanderbilt Ultrasoft Pseudo-Potentials," Phys. Rev. B 47 10142-53 (1993). https://doi.org/10.1103/PhysRevB.47.10142
  20. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-Zone Integrations," Phys. Rev. B 13 5188-92 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  21. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, "Iterative Minimization Technique for ab initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients," Rev. Mod. Phys. 64 1045-97 (1992). https://doi.org/10.1103/RevModPhys.64.1045
  22. P. E. Blochl, "Projector Augmented-Wave Method," Phys. Rev. B 50 17953-79 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  23. G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method," Phys. Rev. B 59 1758-75 (1999).
  24. Y. K. Jeong, J.-H. Lee, S. Song, H. M. Jang, H. Choi, and J. F. Scott, "Structurally Tailored Hexagonal Ferroelectricity and Multiferroism in Epitaxial $YbFeO_3$ Thin-Film Heterostructures," J. Am. Chem. Soc., 134 1450-53 (2012). https://doi.org/10.1021/ja210341b
  25. Y. K. Jeong, J.-H. Lee, S.-J. Ahn, and H. M. Jang, "Epitaxially Constrained Hexagonal Ferroelectricity and Canted Triangular Spin Order in $LuFeO_3$ Thin Films," Chem. Mater., 24 2426-28 (2012). https://doi.org/10.1021/cm300846j
  26. S.-J. Ahn, J.-H. Lee, H. M. Jang, and Y. K. Jeong, "Multiferroism in Hexagonally stabilized $TmFeO_3$ Thin Films below 120 K," J. Mater. Chem. C, 2 4521-25 (2014). https://doi.org/10.1039/c4tc00461b
  27. R. D. King-Smith and D. Vanderbilt, "Theory of Polarization of Crystalline Solids," Phys. Rev. B 47 1651-54 (1993). https://doi.org/10.1103/PhysRevB.47.1651
  28. M.-A. Oak, J.-H. Lee, H. M. Jang, J. S. Goh, H. J. Choi, and J. F. Scott, "4d-5p Orbital Mixing and Asymmetric In 4d-O 2p Hybridization in $InMnO_3$: A New Bonding Mechanism for Hexagonal Ferroelectricity," Phys. Rev. Lett. 106 047601-1-047601-4 (2011). https://doi.org/10.1103/PhysRevLett.106.047601
  29. J-H. Lee, W.-J. Lee, S.-H. Lee, S. M. Kim, S. Kim, and H. M. Jang, "Atomic-Scale Origin of Piezoele ctricity in Wurtzite ZnO," Phys. Chem. Chem. Phys., 17, 7857-63 (2015). https://doi.org/10.1039/C4CP06094F
  30. J.-H. Lee, H. J. Choi, D. Lee, M. G. Kim, C. W. Bark, S. Ryu, M.-A. Oak, and H. M. Jang, "Variations of Ferroelectric Off-Centering Distortion and 3d-4p Orbital Mixing in La-doped $BiFeO_3$ Multiferroics," Phys. Rev. B 82 045113-1-045113-8 (2010). https://doi.org/10.1103/PhysRevB.82.045113
  31. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, "Electric Polarization Reversal and Memory in a Multiferroic Material induced by Magnetic Fields," Nature 429 392-95 (2004). https://doi.org/10.1038/nature02572
  32. J.-H. Lee and H. M. Jang, "Modulated Spin Structure responsible for the Magnetic-Field-induced Polarization Switching in Multiferroic $TbMn_2O_5$," Phys. Rev. B 91 014403-1-014403-7 (2015). https://doi.org/10.1103/PhysRevB.91.014403
  33. J.-H. Lee, S. Song, and H. M. Jang, "Ferroelectric Ground State and Polarization-Switching Path of Orthorhombic $YMnO_3$ with Coexisting E-type and Cycloidal Spin Phases," Phys. Rev. B 88 014116-1-014116-6 (2013). https://doi.org/10.1103/PhysRevB.88.014116
  34. J-H. Lee, Y. K. Jeong, J. H. Park, M.-A. Oak, H. M. Jang, J. Y. Son, and J. F. Scott, "Spin-Cantinginduced Improper Ferroelectricity and Spontaneous Magnetization Reversal in $SmFeO_3$," Phys. Rev. Lett. 107 117201-1-117201-5 (2011) / selected as a highlighted article. https://doi.org/10.1103/PhysRevLett.107.117201
  35. J-H. Lee, Y. K. Jeong, J. H. Park, M.-A. Oak, H. M. Jang, J. Y. Son, and J. F. Scott, "Lee et al. Reply," Phys. Rev. Lett. 108 219702-1-219702-2 (2012). https://doi.org/10.1103/PhysRevLett.108.219702
  36. E. H. Na, S. Song, Y.-M. Koo, and H. M. Jang, "Relaxor-like Improper Ferroelectricity induced by $S_i{\cdot}S_j$-type Collinear Spin Ordering in a M-type Hexaferrite $PbFe_6Ga_6O_{19}$," Acta Mater., 61 7705-11 (2013). https://doi.org/10.1016/j.actamat.2013.09.007
  37. S. Song, J.-H. Lee, and H. M. Jang, "Mode Coupling between Nonpolar and Polar Phonons as the Origin of Improper Ferroelectricity in Hexagonal $LuMnO_3$," J. Mater. Chem. C, 2 [21] 4126-132 (2014) selected as a front cover article. https://doi.org/10.1039/c4tc00182f
  38. J. Y. Son, J.-H. Lee, S. Song, Y.-H. Shin, and H. M. Jang, "Four-States Multiferroic Memory embodied using Mn-doped $BaTiO_3$ Nanorods," ACS Nano, 7 5522-29 (2013). https://doi.org/10.1021/nn4017422
  39. R. von Baltz and W. Kraut, "Theory of the Bulk Photovoltaic Effect in Pure Crystals," Phys. Rev. B 23 5590-596 (1981). https://doi.org/10.1103/PhysRevB.23.5590
  40. S. M. Young, F. Zheng, and A. M. Rappe, "First-Principles Calculation of the Bulk Photovoltaic Effect in Bismuth Ferrite," Phys. Rev. Lett. 109 236601-1-236601-5 (2012). https://doi.org/10.1103/PhysRevLett.109.236601
  41. J. Zhang, X. Su, M. Shen, Z. Dai, L. Zhang, X. He, W. Cheng, M. Cao, and G. Zou, "Enlarging Photovoltaic Effect: Combination of Classic Photoelectric and Ferroelectric Photovoltaic Effects," Sci. Rep. 3 02109 (2013). https://doi.org/10.1038/srep02109