References
- Sol Wieder, The Foundations of Quantum Theory (Academic Press, Inc., Orlando, Florida. 1973), Chapter 3.
- P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics (Oxford University Press, 3rd ed., 1997), Chapter 9.
- W. Kohn and L. J. Sham, "Self-consistent Equations including Exchange and Correlation Effects," Phys. Rev., 140 A1133-38 (1965). https://doi.org/10.1103/PhysRev.140.A1133
- Jose M. Soler et al., "The SIESTA Method for ab initio Order-N Materials Simulation," J. Phys.: Condens. Matter., 14 2745-79 (2002). https://doi.org/10.1088/0953-8984/14/11/302
- P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev., 136 B864-71 (1964). https://doi.org/10.1103/PhysRev.136.B864
- Richard M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, (2004).
- J. P. Perdew and A. Zunger, "Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems," Phys. Rev. B 23, 5048-79 (1981). https://doi.org/10.1103/PhysRevB.23.5048
- S. Vosko, L. Wilk, and M. Nusair, "Accurate Spin-dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis," Can. J. Phys. 58 1200-11 (1983).
- A. I. Liechtenstein et al., "Density-Functional Theory and Strong Interactions: Orbital Ordering to Mott-Hubbard Insulators," Phys. Rev. B 52 R5467-R70 (1995). https://doi.org/10.1103/PhysRevB.52.R5467
- S. L. Dudarev et al., "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: an LSDA+U Study," Phys. Rev. B 57 1505-09 (1998). https://doi.org/10.1103/PhysRevB.57.1505
- J. Heyd, G. E. Scuseria, and M. Ernzerhof, "Hybrid Functionals based on a Screened Coulomb Potential," J. Chem. Phys. 118 8207-15 (2003). https://doi.org/10.1063/1.1564060
- A. Zunger and M. L. Cohen, "First-Principles Nonlocal-Pseudopotential Approach in the Density-Functional Formalism: Development and Application to Atoms," Phys. Rev. B 18 5449-72 (1978). https://doi.org/10.1103/PhysRevB.18.5449
- M. Fuchs and M. Scheffler, "Ab Initio Pseudopotentials for Electronic Structure Calculations of Poly-atomic Systems using Density-Functional Theory," Comput. Phys. Commun. 119 67-98 (1999). https://doi.org/10.1016/S0010-4655(98)00201-X
- G. B. Bachelet, D. R. Hamann, and M. Schluter, "Pseudopotentials That Work: From H to Pu," Phys. Rev. B 26 4199-4228 (1982). https://doi.org/10.1103/PhysRevB.26.4199
- G. B. Bachlet and M. Schluter," Relativistic Norm-conserving Pseudo potentials," Phys. Rev. B 25 2103-08 (1982). https://doi.org/10.1103/PhysRevB.25.2103
- N. Troullier and J. L. Martins, "Efficient Pseudopotentials for Plane-Wave Calculations," Phys. Rev. B 43 1993-2006 (1991). https://doi.org/10.1103/PhysRevB.43.1993
- L. Kleinman and D. M. Bylander, "Efficacious Form for Model Pseudopotentials," Phys. Rev. Lett. 48 1425-28 (1982). https://doi.org/10.1103/PhysRevLett.48.1425
- D. Vanderbilt, "Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism," Phys. Rev. B 41 7892-95 (1990). https://doi.org/10.1103/PhysRevB.41.7892
- K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, "Car-Parrinello Molecular Dynamics with Vanderbilt Ultrasoft Pseudo-Potentials," Phys. Rev. B 47 10142-53 (1993). https://doi.org/10.1103/PhysRevB.47.10142
- H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-Zone Integrations," Phys. Rev. B 13 5188-92 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, "Iterative Minimization Technique for ab initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients," Rev. Mod. Phys. 64 1045-97 (1992). https://doi.org/10.1103/RevModPhys.64.1045
- P. E. Blochl, "Projector Augmented-Wave Method," Phys. Rev. B 50 17953-79 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method," Phys. Rev. B 59 1758-75 (1999).
-
Y. K. Jeong, J.-H. Lee, S. Song, H. M. Jang, H. Choi, and J. F. Scott, "Structurally Tailored Hexagonal Ferroelectricity and Multiferroism in Epitaxial
$YbFeO_3$ Thin-Film Heterostructures," J. Am. Chem. Soc., 134 1450-53 (2012). https://doi.org/10.1021/ja210341b -
Y. K. Jeong, J.-H. Lee, S.-J. Ahn, and H. M. Jang, "Epitaxially Constrained Hexagonal Ferroelectricity and Canted Triangular Spin Order in
$LuFeO_3$ Thin Films," Chem. Mater., 24 2426-28 (2012). https://doi.org/10.1021/cm300846j -
S.-J. Ahn, J.-H. Lee, H. M. Jang, and Y. K. Jeong, "Multiferroism in Hexagonally stabilized
$TmFeO_3$ Thin Films below 120 K," J. Mater. Chem. C, 2 4521-25 (2014). https://doi.org/10.1039/c4tc00461b - R. D. King-Smith and D. Vanderbilt, "Theory of Polarization of Crystalline Solids," Phys. Rev. B 47 1651-54 (1993). https://doi.org/10.1103/PhysRevB.47.1651
-
M.-A. Oak, J.-H. Lee, H. M. Jang, J. S. Goh, H. J. Choi, and J. F. Scott, "4d-5p Orbital Mixing and Asymmetric In 4d-O 2p Hybridization in
$InMnO_3$ : A New Bonding Mechanism for Hexagonal Ferroelectricity," Phys. Rev. Lett. 106 047601-1-047601-4 (2011). https://doi.org/10.1103/PhysRevLett.106.047601 - J-H. Lee, W.-J. Lee, S.-H. Lee, S. M. Kim, S. Kim, and H. M. Jang, "Atomic-Scale Origin of Piezoele ctricity in Wurtzite ZnO," Phys. Chem. Chem. Phys., 17, 7857-63 (2015). https://doi.org/10.1039/C4CP06094F
-
J.-H. Lee, H. J. Choi, D. Lee, M. G. Kim, C. W. Bark, S. Ryu, M.-A. Oak, and H. M. Jang, "Variations of Ferroelectric Off-Centering Distortion and 3d-4p Orbital Mixing in La-doped
$BiFeO_3$ Multiferroics," Phys. Rev. B 82 045113-1-045113-8 (2010). https://doi.org/10.1103/PhysRevB.82.045113 - N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, "Electric Polarization Reversal and Memory in a Multiferroic Material induced by Magnetic Fields," Nature 429 392-95 (2004). https://doi.org/10.1038/nature02572
-
J.-H. Lee and H. M. Jang, "Modulated Spin Structure responsible for the Magnetic-Field-induced Polarization Switching in Multiferroic
$TbMn_2O_5$ ," Phys. Rev. B 91 014403-1-014403-7 (2015). https://doi.org/10.1103/PhysRevB.91.014403 -
J.-H. Lee, S. Song, and H. M. Jang, "Ferroelectric Ground State and Polarization-Switching Path of Orthorhombic
$YMnO_3$ with Coexisting E-type and Cycloidal Spin Phases," Phys. Rev. B 88 014116-1-014116-6 (2013). https://doi.org/10.1103/PhysRevB.88.014116 -
J-H. Lee, Y. K. Jeong, J. H. Park, M.-A. Oak, H. M. Jang, J. Y. Son, and J. F. Scott, "Spin-Cantinginduced Improper Ferroelectricity and Spontaneous Magnetization Reversal in
$SmFeO_3$ ," Phys. Rev. Lett. 107 117201-1-117201-5 (2011) / selected as a highlighted article. https://doi.org/10.1103/PhysRevLett.107.117201 - J-H. Lee, Y. K. Jeong, J. H. Park, M.-A. Oak, H. M. Jang, J. Y. Son, and J. F. Scott, "Lee et al. Reply," Phys. Rev. Lett. 108 219702-1-219702-2 (2012). https://doi.org/10.1103/PhysRevLett.108.219702
-
E. H. Na, S. Song, Y.-M. Koo, and H. M. Jang, "Relaxor-like Improper Ferroelectricity induced by
$S_i{\cdot}S_j$ -type Collinear Spin Ordering in a M-type Hexaferrite$PbFe_6Ga_6O_{19}$ ," Acta Mater., 61 7705-11 (2013). https://doi.org/10.1016/j.actamat.2013.09.007 -
S. Song, J.-H. Lee, and H. M. Jang, "Mode Coupling between Nonpolar and Polar Phonons as the Origin of Improper Ferroelectricity in Hexagonal
$LuMnO_3$ ," J. Mater. Chem. C, 2 [21] 4126-132 (2014) selected as a front cover article. https://doi.org/10.1039/c4tc00182f -
J. Y. Son, J.-H. Lee, S. Song, Y.-H. Shin, and H. M. Jang, "Four-States Multiferroic Memory embodied using Mn-doped
$BaTiO_3$ Nanorods," ACS Nano, 7 5522-29 (2013). https://doi.org/10.1021/nn4017422 - R. von Baltz and W. Kraut, "Theory of the Bulk Photovoltaic Effect in Pure Crystals," Phys. Rev. B 23 5590-596 (1981). https://doi.org/10.1103/PhysRevB.23.5590
- S. M. Young, F. Zheng, and A. M. Rappe, "First-Principles Calculation of the Bulk Photovoltaic Effect in Bismuth Ferrite," Phys. Rev. Lett. 109 236601-1-236601-5 (2012). https://doi.org/10.1103/PhysRevLett.109.236601
- J. Zhang, X. Su, M. Shen, Z. Dai, L. Zhang, X. He, W. Cheng, M. Cao, and G. Zou, "Enlarging Photovoltaic Effect: Combination of Classic Photoelectric and Ferroelectric Photovoltaic Effects," Sci. Rep. 3 02109 (2013). https://doi.org/10.1038/srep02109