컴퓨터 스크리닝을 이용한 재료 설계 : 인버스 디자인 방법

  • 임진오 (화학시뮬레이션연구센터 한국화학연구원) ;
  • 공기정 (화학시뮬레이션연구센터 한국화학연구원) ;
  • 장현주 (화학시뮬레이션연구센터 한국화학연구원)
  • Published : 2015.03.31

Abstract

Keywords

References

  1. G. Ceder and K. Persson, "How Supercomputers Will Yield a Golden Age of Materials Science," Sci. Am., 309 [6] 36-40 (2013). https://doi.org/10.1038/scientificamerican1213-36
  2. http://www.whitehouse.gov/mgi
  3. http://www.whitehouse.gov/blog/2015/02/06/its-timeopen-materials-science-data
  4. http://nomad-repository.eu/cms/
  5. C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp and R. Q. Snurr, "Large-scale Screening of Hypothetical Metal-Organic Frameworks," Nat. Chem., 4 83-89 (2012). https://doi.org/10.1038/nchem.1192
  6. S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S.. Sanvito and O. Levy, "The High-throughput Highway to Computational Materials Design," Nat. Mat., 12 191-201 (2013). https://doi.org/10.1038/nmat3568
  7. http://www.fiz-karlsruhe.de/icsd_web.html
  8. K. Rajan, "Materials Informatics," Mater. Today, 8 38-45 (2005).
  9. P. Dey, J. Bible, S. Datta, S. Broderick, J. Jasinski, M. Sunkara, M. Menon, and K.Rajan, "Informatics-aided Bandgap Engineering for Solar Materials," Comp. Mate. Sci., 83 185-195 (2014). https://doi.org/10.1016/j.commatsci.2013.10.016
  10. Center for Inverse Design http://www.centerforinversedesign.org/
  11. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," Science, 13 671- 680 (1983).
  12. V. Cerny, "Thermodynamical Approach to The Traveling Salesman Problem - An Efficient Simulation Algorithm," J. Optimiz. Theory App., 45 41-51 (1985). https://doi.org/10.1007/BF00940812
  13. N. Barricelli, "Esempi Numerici di Processi di Evoluzione," Methodos, 45-68 (1954).
  14. A. Frenceschetti and A. Zunger, "The Inverse Band-structure Problem of Finding an Atomic Configuration with Given Electronic Properties," Nature, 402 60 (1999). https://doi.org/10.1038/46995
  15. T. P. Pearsall, J. Bevk, L. C. Feldman, J. M. Bonar, J. P. Mannaerts, and A. Ourmazd, "Structurally Induced Optical Transitions in Ge-Si Superlattices," Phys .Rev. Lett., 58 729-32 (1987). https://doi.org/10.1103/PhysRevLett.58.729
  16. R. Zachai, K. Eberl, G. Abstreiter, E. Kasper, and H. Kibbel, "Photoluminescence in Short-period Si/Ge Strained-layer Superlattices," Phys .Rev. Lett., 64 1055-59 (1990). https://doi.org/10.1103/PhysRevLett.64.1055
  17. U. Menczigar, G. Abstreiter, J. Olajos, H. Grimmeiss, H. Kibbel, H. Presting, and E. Kasper, "Enhanced Band-gap Luminescence in Strain-symmetrized (Si)m/(Ge)n Superlattices," Phys. Rev. B, 47 4099- 4102 (1993).
  18. L. Zhang, M. d'Avezac, J.-W. Luo, and A. Zunger, "Genomic Design of Strong Direct-Gap Optical Transition in Si/Ge Core/Multishell Nanowires," Nano. Lett., 12 984-92 (2012). https://doi.org/10.1021/nl2040892
  19. G. Trimarchi, H. Peng, J. Im, A. J. Freeman, V. Cloet, A. Raw, K. R. Poeppelmeier, K. Biswas, S. Lany, and A. Zunger, "Using Design Principles to Systematically Plan the Synthesis of Hole-conducting Transparent Oxides: $Cu_3VO_4$ and $Ag_3VO_4$ as a Case Study," Phys. Rev. B, 84 165116 (2011). https://doi.org/10.1103/PhysRevB.84.165116
  20. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, "First-principles Calculations for Point Defects in Solids," Rev. Mod. Phys., 86 253-305 (2014) https://doi.org/10.1103/RevModPhys.86.253
  21. A. Zunger, "Practical Doping Principles," App. Phys. Lett., 83 57-59 (2003). https://doi.org/10.1063/1.1584074
  22. G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, and X. Gonze, "Identification and Design Principles of Low Hole Effective Mass p-type Transparent Conducting Oxides," Nat. Commun., 4 (2292) 1-7 (2013).
  23. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, "P-type Electrical Conduction in Transparent Thin Tilms of $CuAlO_2$," Nature, 389 939-42 (1997). https://doi.org/10.1038/40087
  24. T. R. Paudel, A. Zakutayev, S. Lany, M. d' 'Avezac, and A. Zunger, "Doping Rules and Doping Prototypes in $A_2BO_4$ Spinel Oxides," Adv. Funct. Mater., 21 4439- 501 (2011).
  25. H. Peng, A. Zakutayev, S. Lany, T. R. Paudel, M. d' 'Avezac, P. F. Ndione, J. D. Perkins, D. S. Ginley, A. R. Nagaraja, N. H. Perry, T. O. Mason, and A. Zunger, "Li-Doped $Cr_2MnO_4$: A New p-Type Transparent Conducting Oxide by Computational Materials Design," Adv. Funct. Mater., 23 5267-76 (2013). https://doi.org/10.1002/adfm.201300807
  26. J. Im, G. Trimarchi, H. Peng, A.r J. Freeman, V. Cloet, A. Raw and K. R. Poeppelmeier, "$KAg11(VO_4)_4$ as a Candidate P-type Transparent Conducting Oxide," J. Chem. Phys., 138 194703 (2013). https://doi.org/10.1063/1.4804556