DOI QR코드

DOI QR Code

Evaluation of antibacterial activity and osteoblast-like cell viability of TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coating on titanium

  • Ji, Min-Kyung (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Park, Sang-Won (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Lee, Kwangmin (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kang, In-Chol (Department of Oral Microbiology, School of Dentistry, Chonnam National University) ;
  • Yun, Kwi-Dug (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Kim, Hyun-Seung (RIS Foundation for Advanced Biomaterials, Chonnam National University) ;
  • Lim, Hyun-Pil (Department of Prosthodontics, School of Dentistry, Chonnam National University)
  • 투고 : 2014.09.17
  • 심사 : 2014.12.23
  • 발행 : 2015.04.30

초록

PURPOSE. The aim of this study was to evaluate antibacterial activity and osteoblast-like cell viability according to the ratio of titanium nitride and zirconium nitride coating on commercially pure titanium using an arc ion plating system. MATERIALS AND METHODS. Polished titanium surfaces were used as controls. Surface topography was observed by scanning electron microscopy, and surface roughness was measured using a two-dimensional contact stylus profilometer. Antibacterial activity was evaluated against Streptococcus mutans and Porphyromonas gingivalis with the colony-forming unit assay. Cell compatibility, mRNA expression, and morphology related to human osteoblast-like cells (MG-63) on the coated specimens were determined by the XTT assay and reverse transcriptase-polymerase chain reaction. RESULTS. The number of S. mutans colonies on the TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coated surface decreased significantly compared to those on the non-coated titanium surface (P<0.05). CONCLUSION. The number of P. gingivalis colonies on all surfaces showed no significant differences. TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coated titanium showed antibacterial activity against S. mutans related to initial biofilm formation but not P. gingivalis associated with advanced periimplantitis, and did not influence osteoblast-like cell viability.

키워드

참고문헌

  1. Niinomi M. Metallic biomaterials. J Artif Organs 2008;11:105-10. https://doi.org/10.1007/s10047-008-0422-7
  2. Grossner-Schreiber B, Griepentrog M, Haustein I, Muller WD, Lange KP, Briedigkeit H, Göbel UB. Plaque formation on surface modified dental implants. An in vitro study. Clin Oral Implants Res 2001;12:543-51. https://doi.org/10.1034/j.1600-0501.2001.120601.x
  3. Watzak G, Zechner W, Ulm C, Tangl S, Tepper G, Watzek G. Histologic and histomorphometric analysis of three types of dental implants following 18 months of occlusal loading: a preliminary study in baboons. Clin Oral Implants Res 2005;16:408-16. https://doi.org/10.1111/j.1600-0501.2005.01155.x
  4. Isidor F. Influence of forces on peri-implant bone. Clin Oral Implants Res 2006;17:8-18.
  5. Becker W, Becker BE, Newman MG, Nyman S. Clinical and microbiologic findings that may contribute to dental implant failure. Int J Oral Maxillofac Implants 1990;5:31-8.
  6. Jung CW. Peri-implant disease and GBR. 1st ed. Narae publishing; Seoul; 2011. p. 2-7.
  7. Elias CN, Figueira DC, Rios PR. Influence of the coating material on the loosing of dental implant abutment screw joints. Mater Sci Eng C 2006;26:1361-6. https://doi.org/10.1016/j.msec.2005.08.011
  8. Chou WJ, Yu GP, Huang JH. Corrosion resistance of ZrN films on AISI 304 stainless steel substrate. Surf Coat Technol 2003;167:59-67. https://doi.org/10.1016/S0257-8972(02)00882-4
  9. Moon BH, Choe HC, Brantley WA. Surface characteristics of TiN/ZrN coated nanotubular structure on the Ti-35Ta-xHf alloy for bio-implant applications. Appl Surf Sci 2012;258:2088-92. https://doi.org/10.1016/j.apsusc.2011.04.050
  10. Damaschek R, Strydom IL, Bergmann H. Improved adhesion of TiN deposited on prenitrided steels. Surf Eng 1997;13:128-32. https://doi.org/10.1179/sur.1997.13.2.128
  11. Groessner-Schreiber B, Neubert A, Müller WD, Hopp M, Griepentrog M, Lange KP. Fibroblast growth on surfacemodified dental implants: an in vitro study. J Biomed Mater Res A 2003;64:591-9.
  12. Chollet L, Perry AJ. The stress in ion-plated HfN and TiN coatings. Thin Solid Films 1985;123:223-34. https://doi.org/10.1016/0040-6090(85)90162-2
  13. Jeong YH, Kwag DM, Chung CH, Kim WG, Choe HC. Corrosion characteristics and surface morphologies of TiN and ZrN film on the abutment screw by Arc-ion coating(2). Corrosion Sci Technol 2011;10:212-7.
  14. Nakazato G, Tsuchiya H, Sato M, Yamauchi M. In vivo plaque formation on implant materials. Int J Oral Maxillofac Implants 1989;4:321-6.
  15. Mombelli A, Lang NP. Microbial aspects of implant dentistry. Periodontol 2000 1994;4:74-80. https://doi.org/10.1111/j.1600-0757.1994.tb00007.x
  16. Tai CN, Koh ES, Akari K. Macroparticles on TiN films prepared by the arc ion plating process. Surf Coat Technol 1990;43/44:324-35. https://doi.org/10.1016/0257-8972(90)90085-Q
  17. Quirynen M, van der Mei HC, Bollen CM, Schotte A, Marechal M, Doornbusch GI, Naert I, Busscher HJ, van Steenberghe D. An in vivo study of the influence of the surface roughness of implants on the microbiology of supraand subgingival plaque. J Dent Res 1993;72:1304-9. https://doi.org/10.1177/00220345930720090801
  18. Lin NM, Huang XB, Zou JJ, Zhang XY, Qin L, Fan AL, Tang B. Effects of plasma nitriding and multiple arc ion plating TiN coating on bacterial adhesion of commercial pure titanium via in vitro investigations. Surf Coat Technol 2012;209:212-5. https://doi.org/10.1016/j.surfcoat.2012.07.046
  19. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 1997;13:258-69. https://doi.org/10.1016/S0109-5641(97)80038-3
  20. Ryan V, Hart TR, Schiller R. Size determination of Streptococcus mutans 10499 by laser light scattering. Biophys J 1980;31:313-24. https://doi.org/10.1016/S0006-3495(80)85061-2
  21. Jeyachandran YL, Narayandass SK, Mangalaraj D, Bao CY, Martin PJ. The effect of surface composition of titanium films on bacterial adhesion. Biomed Mater 2006;1:L1-5. https://doi.org/10.1088/1748-6041/1/1/L01
  22. Jeyachandran YL, Venkatachalam S, Karunagaran B, Narayandass SK, Mangalaraj D, Bao CY, Zhang CL. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films. Mater Sci Eng C 2007;27:35-41. https://doi.org/10.1016/j.msec.2006.01.004
  23. Yoshinari M, Oda Y, Kato T, Okuda K. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 2001;22:2043-8. https://doi.org/10.1016/S0142-9612(00)00392-6
  24. Ata-Ali J, Candel-Marti ME, Flichy-Fernandez AJ, Penarrocha-Oltra D, Balaguer-Martinez JF, Penarrocha Diago M. Peri-implantitis: associated microbiota and treatment. Med Oral Patol Oral Cir Bucal 2011;16:e937-43.
  25. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667-81. https://doi.org/10.1016/S0142-9612(99)00242-2
  26. Schwartz Z, Lohmann CH, Vocke AK, Sylvia VL, Cochran DL, Dean DD, Boyan BD. Osteoblast response to titanium surface roughness and 1alpha,25-(OH)(2)D(3) is mediated through the mitogen-activated protein kinase (MAPK) pathway. J Biomed Mater Res 2001;56:417-26. https://doi.org/10.1002/1097-4636(20010905)56:3<417::AID-JBM1111>3.0.CO;2-K
  27. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667-81. https://doi.org/10.1016/S0142-9612(99)00242-2
  28. Roach HI. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int 1994;18:617-28. https://doi.org/10.1006/cbir.1994.1088
  29. zur Nieden NI, Kempka G, Ahr HJ. In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 2003;71:18-27. https://doi.org/10.1046/j.1432-0436.2003.700602.x

피인용 문헌

  1. Antimicrobial dental implant functionalization strategies —A systematic review vol.35, pp.4, 2016, https://doi.org/10.4012/dmj.2015-314
  2. Surface performances of PVD ZrN coatings in biological environments vol.13, pp.1, 2019, https://doi.org/10.1080/17515831.2018.1553820
  3. Antibacterial Activity and Impact of Different Antiseptics on Biofilm-Contaminated Implant Surfaces vol.9, pp.24, 2015, https://doi.org/10.3390/app9245467
  4. The effect of deposition conditions on the properties of Zr-carbide, Zr-nitride and Zr-carbonitride coatings - a review vol.1, pp.5, 2015, https://doi.org/10.1039/d0ma00232a
  5. Microstructure, properties and applications of Zr-carbide, Zr-nitride and Zr-carbonitride coatings: a review vol.1, pp.5, 2015, https://doi.org/10.1039/d0ma00233j
  6. Biological Effects of the Novel Mulberry Surface Characterized by Micro/Nanopores and Plasma-Based Graphene Oxide Deposition on Titanium vol.16, pp.None, 2015, https://doi.org/10.2147/ijn.s311872
  7. Influence of Surface Texture of Implants on Microorganism - A Review vol.10, pp.28, 2015, https://doi.org/10.14260/jemds/2021/430
  8. Antibacterial Effects of Modified Implant Abutment Surfaces for the Prevention of Peri-Implantitis-A Systematic Review vol.10, pp.11, 2021, https://doi.org/10.3390/antibiotics10111350
  9. Different Coating Methods of Titanium Dioxide on Metal Substrates for Orthopedic and Dental Applications: A Review vol.34, pp.1, 2021, https://doi.org/10.14233/ajchem.2022.23512