DOI QR코드

DOI QR Code

Evaluation and Analysis of Scheduling Algorithms for Peak Power Reduction

전력 피크 감소를 위한 스케줄링 알고리즘의 성능 평가 및 분석

  • Sung, Minyoung (Dept. of Mechanical and Information Engineering, University of Seoul)
  • 성민영 (서울시립대학교 기계정보공학과)
  • Received : 2015.02.27
  • Accepted : 2015.04.09
  • Published : 2015.04.30

Abstract

Peak power reduction is becoming increasingly important not only for grid operators but also for residential users. The scheduling of electric loads tries to reduce the power peak by splitting the power-on period of an electric device into multiple smaller ones and by interleaving the on-periods of every device in a holistic way. This paper analyzes the performance of EDF, LSF, TCBM, and lazy scheduling algorithms and proposes the enhancement schemes. For analysis, we have implemented the scheduling policies in a simulation environment for distributed control systems. Through extensive experiments using real power traces, we discuss their performance characteristics in terms of power deviation, switch count, and temperature violation ratio. To prevent excessive switching, we propose to employ the concept of limited preemptibility and evaluate its effect on performance. It is found that the best performance is achieved when the scheduler capacity is dynamically adjusted to the actual power demand. The experiment results show that, by load scheduling, the probability of having a power deviation greater than 150W is reduced from 21.5% down to 3.2%.

전력 피크 감소는 전력 공급자 뿐 아니라 사용자에게도 점점 중요한 기술이 되고 있다. 전기 부하 스케줄링은 기기의 주기적 작동 시간을 여러 개의 시간 조각들로 분리하고 여러 기기들에 대해 작동 시간 조각들을 통합적으로 교차 배치하여 전력 피크를 줄이는 기법이다. 본 논문에서는 부하 스케줄링 알고리즘인 EDF, LSF, TCBM, lazy 스케줄러의 성능을 분석하고 개선 방안을 제시한다. 분석을 위해 스케줄링 정책들을 분산제어 시뮬레이션 환경에서 구현하고, 실제 전력 사용 데이터를 이용한 광범위한 실험을 통해 전력 편차, 스위칭 횟수, 온도 범위 위반 비율 등의 관점에서 스케줄링 정책별 성능 특성을 논한다. 또한, 과도한 스위칭 방지를 위해 제한적 선점 기능을 제안하고 그 효과를 입증한다. 실험결과, 스케줄러 용량을 실제 전력 요구에 맞춰 설정하면 성능이 극대화됨을 확인하였으며, 스케줄링을 통해 150W 보다 큰 전력편차를 가지는 비율이 원래 21.5%에서 3.2%까지 감소함을 알 수 있었다.

Keywords

References

  1. S. Barker, A. Mishra, D. Irwin, E. Cecchet, and P. Shenoy, "Smart*: an open data set and tools for enabling research in sustainable homes," in Proc. of workshop on Data Mining Applications in Sustainability, Aug. 2012.
  2. T. Facchinetti and M. L. Della Vedova, "Real-time modelling for direct load control in cyber-physical power systems," IEEE Trans. Industrial Informatics, vol. 7, no. 4, pp. 689-698, Nov. 2011. DOI: http://dx.doi.org/10.1109/TII.2011.2166787
  3. S. Barker, A. Mishra, D. Irwin, P. Shenoy, and J. Albrecht, "SmartCap: flattening peak electricity demand in smart homes," in Proc. IEEE Conference on Pervasive Computing and Communications, pp. 67-75, Mar. 2012. DOI: http://dx.doi.org/10.1109/PerCom.2012.6199851
  4. G. Karmakar, A. Kabra, and K. Ramaritham, "Coordinated scheduling of thermostatically controlled real-time systems under peak power constraint," in Proc. IEEE Real Time and Embedded Technology and Applications Symposium, pp. 33-42, Apr. 2013. DOI: http://dx.doi.org/10.1109/RTAS.2013.6531077
  5. T. X. Nghiem, M. Behl, R. Mangharam, and G. J. Papps, "Green scheduling of control systems for peak demand reduction," in Proc. IEEE Conference on Decision and Control and European Control Conference, pp. 5131-5136, Dec. 2011. DOI: http://dx.doi.org/10.1109/CDC.2011.6161164
  6. G. C. Buttazzo, M. Bertogna, and G. Yao, "Limited preemptive scheduling for real-time systems. A survey," IEEE Trans. Industrial Informatics, vol. 9, no. 1, pp. 3-15, Feb. 2013. DOI: http://dx.doi.org/10.1109/TII.2012.2188805
  7. K.-H. John and M. Tiegelkamp, "IEC 61131-3: programming industrial automation systems," Springer, 2010. DOI: http://dx.doi.org/10.1007/978-3-642-12015-2
  8. I. Kim, T. Kim, M. Sung, E. Tisserant, L. Bessard, and C. Choi, "An open-source development environment for industrial automation with EtherCAT and PLCopen motion control," in Proc. IEEE Conference on Emerging Technologies & Factory Automation, Sep. 2013. DOI: http://dx.doi.org/10.1109/ETFA.2013.6648122