DOI QR코드

DOI QR Code

Evaluation of shear bond strength between metal core fabricated by 3D printing and dental porcelain

3D printing으로 제작된 금속 코어와 치과용 도재 간의 전단결합강도 평가

  • Jung, Jae-Kwan (Dept. of Dental Laboratory Technology, Daejeon Health Sciences College) ;
  • Lee, Su-Ok (Dept. of Dental Hygiene, Chungbuk Health Sciences University) ;
  • Kim, Ki-Baek (Research Institute of Health Sciences, Korea University)
  • 정재관 (대전보건대학교 치기공과) ;
  • 이수옥 (충북보건과학대학교 치위생과) ;
  • 김기백 (고려대학교 보건과학연구소)
  • Received : 2015.01.06
  • Accepted : 2015.04.09
  • Published : 2015.04.30

Abstract

The purpose of this study was to evaluate the shear bond strength between metal core fabricated by 3D printing and dental porcelain. Thirty metal cores were fabricated(cast 15ea, 3D printing 15ea). The porcelain for each group was builded to the metal core. Sample was loaded to shear force(crosshead speed 1mm/min) in a universal material testing machine. The fracture samples were analyzed failure aspect. The means were statistical analyzed using by Mann-whitney test(${\alpha}=0.05$). The period of experimental(metal cores fabrication, dental porcelain build up, data analysis, statistical analysis, failure aspect analysis and others) for this study took six months. The $mean{\pm}SDs$ of shear bond strength was $50.14{\pm}1.60MPa$ for the cast group, and $54.36{\pm}3.18MPa$ for the 3D printing group(p=0.035). The failure aspect showed mixed failure. As a results, metal cores fabricated by 3D printing method were clinically acceptable range.

3D 프린팅 기술은 최근 치과용 보철물 제작 기술로 도입이 되었다. 본 연구의 목적은 3D 프린팅 기술에 의해 제작된 금속 코어와 상부 도재와의 전단결합강도를 평가하는 것이다. 본 연구를 위해 30개의 금속 코어를 제작하였다(cast 15개, 3D printing 15개). 금속 코어에 치과용 도재를 축성하여 시편 제작을 완료하였다. 완성된 시편의 전단결합강도는 crosshead speed 1mm/min으로 하중을 가하여 측정하였으며, 두 그룹의 전단결합강도 값 사이에는 통계적으로 유의한지 알아보기 위하여 Mann-Whitney test를 이용하였다(유의수준 0.05). 측정이 끝난 후 시편을 대상으로 파절양상을 분석하였다. 본 연구를 위한 실험 설계, 금속 코어 제작, 도재 축성 등의 시편 제작부터 실험 수행과 수행 후 실험 데이터 분석과 통계 분석 그리고 파절된 시편을 대상으로 한 파절 양상 분석까지 총 6개월이 소요되었다. 실험 결과 cast 50.14, 3D printing 54.36 MPa를 갖는 것으로 조사되었고, 통계적으로도 유의하였다. 파절양상은 두 집단 모두 시편의 대부분이 혼합형 파절양상을 보였다. 이와 같은 결과들로 미루어볼 때 3D 프린팅에 의해 제작된 금속도재관 제작을 위한 금속 코어는 임상적으로 허용이 가능할 것으로 사료된다.

Keywords

References

  1. J. H. Kim, J. K. Jung, K. B. Kim, "Evaluation of validity of three dimensional dental digital model made from blue LED dental scanner", Journal of Korea Academia-Industrial cooperation Society, Vol. 15, No. 5, pp. 3007-3013, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.5.3007
  2. J. R. Strub, E. D. Rekow, S. Witkowski, "Computer aided design and fabrication of dental restorations: current systems and future possibilities", Journal of the American Dental Association, Vol. 137, No. 9, pp. 1289-1296, 2006. DOI: http://dx.doi.org/10.14219/jada.archive.2006.0389
  3. A. S. Bidra, T. D. Taylor, J. R. Agar, "Computer aided technology for fabricating complete dentures: systematic review of historical background, current status, and future perspectives", Journal of Prosthetic Dentistry, Vol. 109, No. 6, pp. 361-366, 2013. DOI: http://dx.doi.org/10.1016/S0022-3913(13)60318-2
  4. R. van Noort, "The future of dental devices is digital", Dental Materials, Vol. 28, No. 1, pp. 3-12, 2012. DOI: http://dx.doi.org/10.1016/j.dental.2011.10.014
  5. R. P. O'Conner, J. R. Mackert Jr, M. L. Myers, E. E. Parry, "Castability, opaque masking, and porcelain bonding of 17 porcelain-fused-to-metal alloys", Journal of Prosthetic Dentistry, Vol. 75, No. 4, pp. 367-374, 1996. DOI: http://dx.doi.org/10.1016/S0022-3913(96)90027-X
  6. K. B. Kim, J. H. Kim, "A study on the shear bond strength of veneering ceramics to the lithium disilicate (IPS e.max CAD) core", Journal of Dental Hygiene Science, Vol. 13, No. 3, pp. 290-295, 2013.
  7. K. B. Kim, J. H. Kim, "Influence of low temperature degradation on bond strength of yttria-stabilized tetragonal zirconia polycrystal core to veneering ceramic", Journal of Dental Hygiene Science, Vol. 14, No. 1, pp.29-34, 2014.
  8. K. J. Anusavice, "Phillips' science of dental materials. 11th ed", pp.621-654, Philadelphia:W.B. Saunders, 2003.
  9. L. H. Pierce, R. J. Goodkind, "A status report of possible risks of base metal alloys and their components", Journal of Prosthetic Dentistry, Vol. 62, No. 2, pp. 234-238, 1989. DOI: http://dx.doi.org/10.1016/0022-3913(89)90320-X
  10. R. W. Wassell, A. W. G. Walls, J. G. Steele, "Crowns and extra-coronal restorations: materials selection", British Dental Journal, Vol. 192, No. 4, pp. 199-211, 2002. DOI: http://dx.doi.org/10.1038/sj.bdj.4801334
  11. J. H. Kim, W. S. Kim, K. B. Kim, "Evaluation of fitness of metal-ceramic crown fabricated by cobalt-chrome alloy", Journal of Korean Society of Dental Hygiene, Vol. 13, No. 2, pp. 361-368, 2013. DOI: http://dx.doi.org/10.13065/jksdh.2013.13.2.361
  12. T. Korkmaz, V. Asar, "Comparative evaluation of bond strength of various metal-ceramic restorations", Materials & Design, Vol 30, No. 3, pp. 445-451, 2009. DOI: http://dx.doi.org/10.1016/j.matdes.2008.06.002
  13. N. Nieva, C. Arreguez, R. N. Carrizo, C. Saborido Mole, G. M. Lagarrigue, "Bonding strength evaluation on metal/ceramic interfaces in dental materials", Procedia Materials Science, Vol. 1, pp. 475-482, 2012. DOI: http://dx.doi.org/10.1016/j.mspro.2012.06.064
  14. T Kulunk, M Kurt, C Ural, S Kulunk, S Baba, "Effect of different air-abrasion particles on metal-ceramic bond strength", Vol. 6, No. 3, pp. 140-146, 2011. https://doi.org/10.1016/j.jds.2011.05.003
  15. M. J. Reyes, Y. Oshida, C. J. Andres, T. Carco, S. Hovijitra, D. Brown, "Titanium-porcelain system. Part III: effects of surface modification on bond strengths", Bio-Medical Materials and Engineering, Vol. 11, No. 2, pp. 117-136, 2001.
  16. P. J. Steiner, J. R. Kelly, A. A. Giuseppetti, "Compatibility of ceramic-ceramic systems for fixed prosthodontics", The International Journal of Prosthodontics, Vol. 10, No. 4, pp. 375-380, 1997.
  17. R. G. Craig, M. L. Ward, "Restorative dental materials. 10th ed", pp. 484-99, St. Louis: Mosby, 1997.
  18. M. Ishibe, A. J. Raigrodski, B. D. Flinn, K. H. Chung, C. Spiekerman, R. R. Winter, "Shear bond strengths of pressed and layered veneering ceramics to high-noble alloy and zirconia cores", Journal of Prosthetic Dentistry, Vol. 106, No. 1, pp. 29-37, 2011. DOI: http://dx.doi.org/10.1016/S0022-3913(11)60090-5
  19. R. M. Joias, R. N. Tango, J. E. Junho de Araujo, M. A. Junho de Araujo, S. Ferreira Anzaloni Saavedra Gde, T. J. Paes-Junior, E. T. Kimpara, "Shear bond strength of a ceramic to Co-Cr alloys", Journal of Prosthetic Dentistry, Vol. 99, No. 1, pp. 54-59, 2008 DOI: http://dx.doi.org/10.1016/S0022-3913(08)60009-8
  20. International Organization for Standardization, "Dental Materials-guidance on testing of adhesion to tooth structure, ISO/TR 11405", nternational Organization for Standardization, Geneva, Switzerland, 1994.
  21. A. V. Gusarov, T. Laoui, L. Froyen, V. I. Titov, "Contact thermal conductivity of a powder bed in selective laser sintering", International Journal of Heat and Mass Transfer, Vol. 46, No. 6, pp. 1103-1109, 2003. DOI: http://dx.doi.org/10.1016/S0017-9310(02)00370-8
  22. D. D. Gu, Y. Shen, "Balling phenomena during direct laser sintering of multi-component Cu-based metal powder", Journal of Alloys and Compounds, Vol. 432, No. 1-2, pp. 163-166, 2007. DOI: http://dx.doi.org/10.1016/j.jallcom.2006.06.011
  23. R. G. Craig, J. M. Powers, "Restorative dental materials. 11th ed", pp. 85, St. Louis: Mosby, 2002.
  24. A. A. El Zohairy, A. J. De Gee, M. M. Mohsen, A. J. Feilzer, "Microtensile bond strength testing of luting cements to prefabricated CAD/CAM ceramic and composite blocks", Dental Materials, Vol. 19, No. 7, pp. 575-583, 2003. DOI: http://dx.doi.org/10.1016/S0109-5641(02)00107-0
  25. A. T. Hara, L. A. Pimenta, A. L. Rodrigues Jr, "Influence of cross-head speed on resin-dentin shear bond strength", Dental Materials, Vol. 17, No. 2, pp. 165-169, 2001. DOI: http://dx.doi.org/10.1016/S0109-5641(00)00060-9
  26. H. M. Al-Dohan, P. Yaman, J. B. Dennison, M. E. Razzoog, B. R. Lang, "Shear strength of core-veneer interface in bi-layered ceramics", Journal of Prosthetic Dentistry, Vol. 91, No. 4, pp. 349-355, 2004. DOI: http://dx.doi.org/10.1016/j.prosdent.2004.02.009
  27. K. J. Anusavice, "Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal-ceramic fixed dental prostheses" Dental Materials, Vol. 28, No. 1, pp. 102-111, 2012. DOI: http://dx.doi.org/10.1016/j.dental.2011.09.012
  28. D. Petteno, G. Schierano, F. Bassi, M. E. Bresciano, S. Carossa, "Comparison of marginal fit of 3 different metal-ceramic systems: an in vitro study" The International Journal of Prosthodontics, Vol 13, No. 5, pp. 405-408, 2000.
  29. B. E. Pjetursson, I. Sailer, M. Zwahlen, C. H. Hammerle, "A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns", Vol. 19, No. 3, pp. 326-328, 2008. https://doi.org/10.1111/j.1600-0501.2007.01549.x
  30. G. Libby, M. R. Arcuri, W. E. LaVelle, L. Hebl, "Longevity of fixed partial dentures", Vol. 78, No. 2, pp. 127-131, 1997. https://doi.org/10.1016/S0022-3913(97)70115-X
  31. R. M. de Melo, A. C. Travassos, M. P. Neisser, "Shear bond strengths of a ceramic system to alternative metal alloys", Journal of Prosthetic Dentisty, Vol. 93, No. 1, pp. 64-69. 2005. DOI: http://dx.doi.org/10.1016/j.prosdent.2004.10.017