DOI QR코드

DOI QR Code

Study on Pretreatment of Giant Miscanthus Using Ionic Liquid and Structural Change of Lignin

이온성 액체에 의한 거대억새 전처리 특성 및 리그닌의 구조적 변화 관찰

  • Park, Shin Young (Department of Forest Sciences, CALS, Seoul National University) ;
  • Hwang, Hyewon (Department of Forest Sciences, CALS, Seoul National University) ;
  • Jang, SooKyeong (Department of Forest Sciences, CALS, Seoul National University) ;
  • Choi, In Gyu (Department of Forest Sciences, CALS, Seoul National University) ;
  • Choi, JoonWeon (Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology)
  • 박신영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 황혜원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 장수경 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최준원 (서울대학교 국제농업기술대학원/그린바이오연구원)
  • Received : 2014.10.28
  • Accepted : 2014.12.03
  • Published : 2015.05.25

Abstract

To investigate the effects of ionic liquid pretreatment on biomass, giant miscanthus was treated with 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) and 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) at three temperature conditions ($90^{\circ}C$, $110^{\circ}C$, and $130^{\circ}C$). As temperature condition increased, yield of the cellulose-rich product (CP) was reduced from 87.2% to 67.6%, while yield of the ionic liquid lignin (ILL) increased from 2.2% to 9.9%. Compared to the ILL, CP had lower carbon contents and higher oxygen contents. Enzymatic hydrolysis of CPs showed that conversion ratio of CP treated with [Emim][OAc] at $110^{\circ}C$ was 56.7%, the highest digestibility. Thermogravimetric analysis indicated that the maximum degradation rate decreased as temperature condition increased. In addition, maximum degradation temperature of ILL treated with [Emim][OAc] ranged from 274 to $279^{\circ}C$ which was lower than that of ILL treated with [Bmim][OAc]. Analytical date for ${\beta}$-O-4 linkage frequency in the ILL revealed that ${\beta}$-O-4 linkage frequency in the ILL decreased as the temperature rose. Furthermore, the highest S/G ratio of the ILL was determined to ca. 1.2 obtained from [Bmim][OAc] treatment at $110^{\circ}C$.

이온성 액체를 이용한 거대억새의 전처리 특성을 알아보기 위하여 1-ethyl-3-methylimidazolium acetate ([Emim][OAc])와 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) 두 종류의 이온성 액체로 $90^{\circ}C$, $110^{\circ}C$, $130^{\circ}C$ 세 온도조건에서 전처리를 진행하였다. 반응 온도가 높아짐에 따라 cellulose-rich product (CP)의 수율은 87.2%에서 67.6%로 점차 감소하였으며 ionic liquid lignin (ILL)의 수율은 2.2%에서 9.9%로 증가하였다. CP는 ILL에 비해 탄소함량은 낮았지만, 산소함량은 높게 나타났다. CP의 효소당화 결과 $110^{\circ}C$에서 [Emim][OAc]로 전처리하여 얻은 CP의 당화율이 56.7%로 가장 높게 나타났다. ILL의 열중량 분석 결과에 의하면 전처리 온도가 증가함에 따라 최대분해율은 점차 감소하였으며, 최대분해온도는 [Emim][OAc]로 처리한 ILL이 $274{\sim}279^{\circ}C$로 [Bmim][OAc]의 $2701{\sim}294^{\circ}C$보다 낮은 경향을 나타내었다. 전처리 온도가 $90^{\circ}C$에서 $130^{\circ}C$로 증가함에 따라 ILL 내 ${\beta}$-O-4 결합빈도는 [Emim][OAc]의 경우 $2315{\mu}mol/g$에서 $591{\mu}mol/g$으로, [Bmim][OAc]의 경우 $1936{\mu}mol/g$에서 $2478{\mu}mol/g$으로 감소하였다. ILL의 S/G ratio는 [Bmim][OAc]용액으로 $110^{\circ}C$에서 처리하였을 때 1.2로 가장 높게 나타났다.

Keywords

References

  1. Arseneau, D.F. 1971. Competitive reactions in the thermal decomposition of cellulose. Canadian Journal of Chemistry 49(4): 632-638. https://doi.org/10.1139/v71-101
  2. Fu, D., Mazza, G. 2011. Aqueous ionic liquid pretreatment of straw. Bioresource Technology 102(13): 7008-7011. https://doi.org/10.1016/j.biortech.2011.04.049
  3. Hall, M., Bansal, P., Lee, J.H., Realff, M.J., Bommarius, A.S. 2010. Cellulose crystallinity: a key predictor of the enzymatic hydrolysis rate. FEBS Journal 277(6): 1571-1582. https://doi.org/10.1111/j.1742-4658.2010.07585.x
  4. Kim, J.Y., Kim, T.S., Hwang, H., Oh, S., Choi, J.W. 2012. Chemical.structural characterization of lignin extracted from pitch pine with ionic liquid (1-ethyl-3-methylimidazolium acetate). Journal of Korean Wood Science and Technology 40(3): 194-203. https://doi.org/10.5658/WOOD.2012.40.3.194
  5. Kishimoto, T., Uraki, Y., Ubukata, M. 2006. Chemical synthesis of ${\beta}$-O-4 type artificial lignin. Organic & Biomolecular Chemistry 4(7): 1343-1347. https://doi.org/10.1039/b518005h
  6. Lee, Y., Eum, P.R.B., Ryu, C., Park, Y.K., Jung, J.H., Hyun, S. 2013. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresource Technology 130: 345-350. https://doi.org/10.1016/j.biortech.2012.12.012
  7. Leopold, B., Malmstrom, L. 1951. Nitrobenzene oxidation of the products formed by the condensation of resorcinol with lignin models. Acta Chemica Scandinavica 5: 1393-1421. https://doi.org/10.3891/acta.chem.scand.05-1393
  8. Li, C., Cheng, G., Balan, V., Kent, M.S., Ong, M., Chundawat, S.P., Melnichenko, Y.B., Dale, B.E., Simmons, B.A., Singh, S. 2011. Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology 102(13): 6928-6936. https://doi.org/10.1016/j.biortech.2011.04.005
  9. Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B. A., Singh, S. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology 101(13): 4900-4906. https://doi.org/10.1016/j.biortech.2009.10.066
  10. Maki-Arvela, P., Anugwom, I., Virtanen, P., Sjoholm, R., Mikkola, J.P. 2010. Dissolution of lignocellulosic materials and its constituents using ionic liquid: a review. Industrial Crops and Products 32(3): 175-201. https://doi.org/10.1016/j.indcrop.2010.04.005
  11. Mora-Pale, M., Meli, L., Doherty, T.V., Linhardt, R.J., Dordick, J.S. 2011. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnology and Bioengineering 108(6): 1229-1245. https://doi.org/10.1002/bit.23108
  12. Samayam, I.P., Schall, C.A. 2010. Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresource Technology 101(10): 3561-3566. https://doi.org/10.1016/j.biortech.2009.12.066
  13. Sharma, R.K., Hajaligol, M.R. 2003. Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons (PAHs) from polyphenolic compounds. Journal of Analytical and Applied Pyrolysis 66(1): 123-144. https://doi.org/10.1016/S0165-2370(02)00109-2
  14. Sheldon, R.A., Lau, R.M., Sorgedrager, M.J., van Rantwijk, F., Seddon, K. R. 2002. Biocatalysis in ionic liquids. Green Chemistry 4(2): 147-151. https://doi.org/10.1039/b110008b
  15. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. 2008. Determination of ash in biomass. National Renewable Energy Laboratory, 1-5.
  16. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2008. Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, 1-15.
  17. Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodriguez, H., Rogers, R.D. 2009. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry 11(5): 646-655. https://doi.org/10.1039/b822702k
  18. Sun, R., Tomkinson, J., Lloyd Jones, G. 2000. Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fibre. Polymer Degradation and Stability 68(1): 111-119. https://doi.org/10.1016/S0141-3910(99)00174-3
  19. Tan, H.T., Lee, K.T. 2012. Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chemical Engineering Journal 183: 448-458. https://doi.org/10.1016/j.cej.2011.12.086
  20. Zhang, H., Wu, J., Zhang, J., He, J. 2005. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38(20): 8272-8277. https://doi.org/10.1021/ma0505676
  21. Zhang, J., Zhang, H., Wu, J., Zhang, J., He, J., Xiang, J. 2010. NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Physical Chemistry Chemical Physics 12(8): 1941-1947. https://doi.org/10.1039/b920446f