Clinical Findings and Gene Analysis of 3-Methylcrotonyl-CoA Carboxylase Deficiency

3-methylcrotonyl-CoA carboxylase 결핍증의 임상 양상과 유전자 분석

  • Lee, Seung Eun (Department of Pediatrics, Soonchunhyang University Hospital) ;
  • Ahn, Hee Jae (Department of Pediatrics, Soonchunhyang University Hospital) ;
  • Lee, Jeongho (Department of Pediatrics, Soonchunhyang University Hospital) ;
  • Lee, Dong Hwan (Department of Pediatrics, Soonchunhyang University Hospital)
  • 이승은 (순천향대학교병원 소아과학교실) ;
  • 안희재 (순천향대학교병원 소아과학교실) ;
  • 이정호 (순천향대학교병원 소아과학교실) ;
  • 이동환 (순천향대학교병원 소아과학교실)
  • Published : 2015.04.25

Abstract

Purpose: 3-methylcrotonyl CoA carboxylase deficiency (3MCCD) is leucine metabolic disorder caused by mutation in MCCC1 or MCCC2 gene. Clinical manifestations are variable, ranging from fatal neonatal onset to asymptomatic individuals. There is no retrospective study of Korean patients undergoing long-term treatment for 3MCCD. We reported this study to find out clinical symptoms and gene analysis of 3MCCD patients. Methods: This study was based on data of patients diagnosed with 3MCCD in Soonchunhyang university hospital between April 2009 and September 2013. We report clinical, enzymatic and mutation data of 3MCCD patients found by newborn screening. Results: In tandem mass spectrometry, 3-OH-isovalerylcarnitine (C5OH) of all patients increased. And all 7 patients were elevated 3-methylcrotonylglycine (3MCG) and 3-hydroxyisovaleric acid (3HIVA) in urine. MCCC mutation was identified in 2 patients and MCCC2 was mutated in 5 patients. We found mutation occurred in 8 different parts of nucleotide and such mutation caused 7 different types of changes in amino acid. All patients are on medication of L-carnitine and L-glycine. 4 patients are taking biotin. And 4 patients are eating leucine free formula. After starting treatment, there were no significant changes of urine 3MCG and 3HIVA levels. Conclusions: According to our data, MCCC2 gene mutation was more common than MCCC1 gene mutation. But the level of 3HIVA or 3MCG in urine has no correlation with phenotype. All patients has no symptoms and are shown normal development.

목적: 3-methylcrotonyl CoA carboxylase 결핍은 MCCC1 또는 MCCC2 유전자 돌연변이로 인하여 발생하는 leucine 대사의 이상이다. 임상 양상은 신생아기에 중한 경과를 보이는 경우부터 무증상까지 다양하다. 3MCCD에 대한 한국의 장기적인 연구가 아직 없으며 본 저자는 3MCCD로 진단받은 환아들의 임상 양상과 유전자 분석에 대하여 연구하기로 하였다. 목적: 본 연구는 2009년 4월부터 2013년 9월 사이에 순천향대학교 서울병원 유전자 클리닉에서 3MCCD로 진단받은 7명의 환아를 대상으로 하였으며, 이중 자매 1쌍을 포함하였다. 이들은 모두 신생아 대사이상 검사에서 진단받은 환아들이었다. 결과: 신생아 대사이상 선별검사에서 3-OH-isovalerylcarnitine(C5OH) 수치는 2.705 umol/L에서 12.18 umol/L까지 나타내었고 정상 범위보다 증가해 있었다(정상범위<0.54 umol/L). 모든 환아에서 소변 3MCG의 상승된 소견 확인되었으며, 범위는 1.21에서 818.09 mmol/mol Cr 이었다(정상 소견은 소변에서 3MCG가 검출되지 않아야 한다). 7명의 환자에서 소변 3HIVA에서 상승된 소견 확인되었다. MCCC1 유전자 변이는 2명의 환아에서 확인되었고, MCCC2 유전자 변이는 5명의 환아에서 확인되었다. 또한 8종류의 뉴클레오타이드 변화와 그에 따른 아미노산 서열의 변화도 확인할 수 있었다. MCCC1 유전자 변이 환아는 자매관계였으며 c.826T>C 한 종류의 뉴클레오타이드 변화를 나타냈으며, MCCC2 유전자 변이 환아의 경우에서는 총 7 종류의 뉴클레오타이드 변화를 확인할 수 있었다. 모든 환아에서 진단 즉시 L-carnitine (50-100 mg/kg/day), L-glycine (100-200 mg/kg/day), leucine 제한 식이를 시작하였으며, 그 중 4명의 환아는 조효소로서의 biotin 투여를 시작하였다. 지속적인 경과 관찰 후 4명의 환아는 정상 식이를 진행 중이다. 치료 시작 후 소변 3MCG, 3HIVA의 변화에는 유의할 변화를 확인할 수 없었으며, 매 3-6개월 마다 L-carnitine 용량의 조절을 위하여 혈중 free carnitine 수치를 검사하고 있다. 결론: 본 연구에서 무증상 3MCCD 환아에서 MCCC1 유전자 변이는 29%, MCCC2 유전자 변이는 71%로 MCCC2 유전자 변이가 더 많았다. 그러나 이러한 원인이 되는 유전자 종류와 소변 3MCG, 3HIVA 수치와 임상 양상과는 유의할 상관 관계를 확인할 수 없었으며, 이는 추후 연구 되어야 할 것으로 생각된다.

Keywords

References

  1. Sarah C Grunert, Martin Stucki, Raphael J Morscher, Terttu Suormala, Celine Burer, Patricie Burda, et al. 3-methylcrotonyl-CoA carboxylase deficiency: Clinical, biochemical, enzymatic and molecular studies in 88 individuals.
  2. Sweetman L, Williams JC. Branched chain organic acidurias. In In The Metabolic & Molecular Bases of Inherited Disease. 8th edition. Edited by Scriver CR, Beaudet AL, Sly WS, Valle D. New York: McGraw Hill; 2001:2125-63.
  3. Eminoglu FT, Ozcelik AA, Okur I, Tumer L, Biberoglu G, Demir E, et al. 3-Methylcrotonyl-CoA carboxylase deficiency: phenotypic variability in a family. J Child Neurol 2009,24:478-81. https://doi.org/10.1177/0883073808324536
  4. Visser G, Suormala T, Smit GP, Reijngoud DJ, Bink-Boelkens MT, Niezen-Koning KE, et al. 3-methylcrotonyl-CoA carboxylase deficiency in an infant with cardiomyopathy, in her brother with developmental delay and in their asymptomatic father. Eur J Pediatr 2000;159:901-4. https://doi.org/10.1007/PL00008366
  5. Uematsu M, Sakamoto O, Sugawara N, Kumagai N, Morimoto T, Yamaguchi S, et al. Novel mutations in five Japanese patients with 3-methylcrotonyl-CoA carboxylase deficiency. J Hum Genet 2007;52:1040-3. https://doi.org/10.1007/s10038-007-0211-9
  6. Gallardo ME, Desviat LR, Rodrigues JM, Esparza-Gordillo J, Perez-Cerda C, Perez B, et al. The molecular basis of 3-methlcrotonylglycinuria, a disorder of leucine catabolsim. Am J Hum Genet 2001;68:334-6. https://doi.org/10.1086/318202
  7. Beemer FA, Bartlett K, Duran M, Ghneim HK, Wadman SK, Bruinvis L, et al. Isolated biotinresistant 3-methylcrotonyl-CoA carboxylase deficiency in two sibs. Eur J Pediatr 1982;138:351-4. https://doi.org/10.1007/BF00442517
  8. Mourmans J, Bakkeren J, de Jong J, Wevers R, van Diggelen OP, Suormala T, et al. Isolated (biotinresistant) 3-methylcrotonyl-CoA carboxylase deficiency: Four sibs devoid of pathology. J Inherit Metab Dis 1995;18:643-5. https://doi.org/10.1007/BF02436014
  9. Pearson MA, Aleck KA, Heidenreich RA. Benign clinical presentation of 3-methylglycinuria. J Inherit Metab Dis 1995;18:640-1. https://doi.org/10.1007/BF02436012
  10. Arnold GL, Koeberl DD, Matern D, Barshop B, Braverman N, Burton B, et al. A Delphi-based consensus clinical practice protocol for the diagnosis and management of 3-methylcrotonyl CoA carboxylase deficiency. Mol Genet Metab 2008,93:363-70. https://doi.org/10.1016/j.ymgme.2007.11.002
  11. Oude Luttikhuis HG, Touati G, Rabier D, Williams M, Jakobs C, Saudubray JM. Severe hypoglycaemia in isolated 3-methylcrotonyl-CoA carboxylase deficiency; a rare, severe clinical presentation. J Inherit Metab Dis 2005,28:1136-8. https://doi.org/10.1007/s10545-005-4545-1
  12. Arnold GL, Koeberl DD, Matern D, Barshop B, Braverman N, Burton B, et al. A Delphi-based consensus clinical practice protocol for the diagnosis and management of 3-methylcrotonyl CoA carboxylase deficiency. Mol Genet Metab 2008,93:363-70. https://doi.org/10.1016/j.ymgme.2007.11.002
  13. Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. J Child Neurol 1999;14:S4-8. https://doi.org/10.1177/0883073899014001021
  14. Koeberl DD, Millington DS, Smith WE, Weavil SD, Muenzer J, McCandless SE, et al. Evaluation of 3-methylcrotonyl-CoA carboxylase deficiency detected by tandem mass spectrometry newborn screening. J Inherit Metab Dis 2003;26:25-35. https://doi.org/10.1023/A:1024015227863
  15. Roscher AA, Liebl B, Fingerhut R, Olgemoller B. Prospective study of MSMS newborn screening in Bavaria, Germany. J Inherit Metab Dis 2000;23:4.
  16. Schulze A, Lindner M, Kohlmuller D, Olgemoller K, Mayatepek E, Hoffmann GF. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics 2003;111:1399-406. https://doi.org/10.1542/peds.111.6.1399
  17. Wilcken B, Wiley V, Hammond J, Carpenter K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl JMed 2003;348:2304-12. https://doi.org/10.1056/NEJMoa025225
  18. Holzinger A, Roschinger W, Lagler F, Mayerhofer PU, Lichtner P, Kattenfeld T, et al. Cloning of the human MCCA and MCCB genes and mutations therein reveal the molecular cause of 3-methylcrotonyl-CoA: carboxylase deficiency. Hum Mol Genet 2001;10:1299-306. https://doi.org/10.1093/hmg/10.12.1299
  19. Baumgartner MR, Almashanu S, Suormala T, Obie C, Cole RN, Packman S, et al. The molecular basis of human 3-methylcrotonyl-CoA carboxylase deficiency. J Clin Invest 2001;107:495-504. https://doi.org/10.1172/JCI11948
  20. Bannwart C, Wermuth B, Baumgartner R, Suormala T, Wiesmann UN. Isolated biotin-resistant deficiency of 3-methylcrotonyl-CoA carboxylase presenting as a clinically severe form in a newborn with fatal outcome. J Inherit Metab Dis 1992;15:863-8. https://doi.org/10.1007/BF01800223
  21. Dodelson de Kremer R, Latini A, Suormala T, Baumgartner ER, Larovere L, Civallero G, et al. Leukodystrophy and CSF purine abnormalities associated with isolated 3-methylcrotonyl-CoA carboxylase deficiency. Metabolic Brain Disease 2002;17:13-8. https://doi.org/10.1023/A:1014096112916
  22. Baykal T, Huner Gokcay G, Ince Z, Dantas MF, Fowler B, Baumgartner MR, et al. 3-methylcrotonyl-CoA carboxylase deficiency with early onset necrotizing encephalopathy and lethal outcome. J Inherit Metab Dis 2005;28:229-33. https://doi.org/10.1007/s10545-005-4559-8
  23. Gibson KM, Bennett MJ, Naylor EW, Morton DH. 3-Methylcrotonyl-coenzyme A carboxylase deficiency in Amish/Mennonite adults identified by detection of increased acylcarnitines in blood spots of their children. J Pediatr 1998,132:519-23. https://doi.org/10.1016/S0022-3476(98)70032-0
  24. Stadler SC, Polanetz R, Maier EM, Heidenreich SC, Niederer B, Mayerhofer PU, et al. Newborn screening for 3-methylcrotonyl-CoA carboxylase deficiency: population heterogeneity of MCCA and MCCB mutations and impact on risk assessment. Hum Mutat 2006;27:748-59. https://doi.org/10.1002/humu.20349
  25. DantasMF, Suormala T, Randolph A, Coelho D, Fowler B, Valle D, et al. 3-Methylcrotonyl-CoA carboxylase deficiency: mutation analysis in 28 probands, 9 symptomatic and 19 detected by newborn screening. Hum Mutat 2005;26:164.
  26. SY Cho, H-D Park, Y-W Lee, C-S Ki, S-Y Lee, YB Sohn, et al. Mutational spectrum in eight Korean patients with 3-methylcrotonyl-CoA carboxylase deficiency. Clin Genet 2012;81:96-8. https://doi.org/10.1111/j.1399-0004.2011.01704.x