JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 28, No. 2, May 2015 http://dx.doi.org/10.14403/jcms.2015.28.2.331

ON SINGLE CYCLE T-FUNCTIONS GENERATED BY SOME ELEMENTS

MIN SURP RHEE*

ABSTRACT. Invertible transformations over *n*-bit words are essential ingredients in many cryptographic constructions. When *n* is large such invertible transformations are usually represented as a composition of simpler operations such as linear functions, S-P networks, Feistel structures and T-functions. Among them we study T-functions which are probably invertible transformations and are very useful in stream ciphers. In this paper we study the number of single cycle T-functions satisfying some conditions and characterize single cycle T-functions on $(\mathbb{Z}_2)^n$ generated by some elements in $(\mathbb{Z}_2)^{n-1}$.

1. Introduction

There are many researches about T-functions since Klimov and Shamir have first proposed a T-function to construct MDS maps in block ciphers[6] in order to resist differential attacks. They are also used in stream ciphers to overcome LFSR's shortcoming.

Let $(\mathbb{Z}_2)^n = \{(x_0, x_1, \dots, x_{n-1}) \mid x_i \in \mathbb{Z}_2\}$ be the set of all *n*-tuples of elements in $\mathbb{Z}_2 = \{0, 1\}$, where *n* is a positive integer. An element of \mathbb{Z}_2 is called *a bit* and an element of $(\mathbb{Z}_2)^n$ is called *an nbit word*. Let $[x]_{i-1}$ be the *i*-th bit from the left end of *n*-bit word *x*. Then $x = ([x]_0, [x]_1, \dots, [x]_{n-1})$. In particular, the first bit $[x]_0$ of *x* is called *the least bit of x*. It is often useful to express an element $([x]_0, [x]_1, \dots, [x]_{n-1})$ of $(\mathbb{Z}_2)^n$ as an element $\sum_{i=0}^{n-1} [x]_i 2^i$ of \mathbb{Z}_{2^n} . In this expression every element of $(\mathbb{Z}_2)^n$ is considered as an element of \mathbb{Z}_{2^n} and vice versa, where \mathbb{Z}_{2^n} is the congruence ring modulo 2^n .

Received March 21, 2015; Accepted April 24, 2015.

²⁰¹⁰ Mathematics Subject Classification: Primary 94A60.

Key words and phrases: a T-function, an $n\mbox{-bit}$ word, period, a boolean function, a single cycle T-function.

The present research was conducted by the research fund of Dankook University in 2014.

Consequently $(\mathbb{Z}_2)^n$ is considered as \mathbb{Z}_{2^n} and vice versa. So an element of \mathbb{Z}_{2^n} can be considered as an *n*-bit word. For example, an 8-bit word (1,1,0,1,0,0,1,0) of $(\mathbb{Z}_2)^8$ is considered as an element 75 of $\mathbb{Z}_{2^8} = \mathbb{Z}_{256}$ and an element 135 of \mathbb{Z}_{2^8} is considered as an 8-bit word (1,1,1,0,0,0,0,1) of $(\mathbb{Z}_2)^8$.

DEFINITION 1.1. For any *n*-bit words $x = (x_0, x_1, \dots, x_{n-1})$ and $y = (y_0, y_1, \dots, y_{n-1})$ of \mathbb{Z}_{2^n} we define the following binary operations:

- (1) $x \pm y$ and xy are defined as $x \pm y \mod 2^n$ and $xy \mod 2^n$, respectively.
- (2) $x \oplus y$ is defined as $(z_0, z_1, \dots, z_{n-1})$, where $z_i = 0$ if $x_i = y_i$ and $z_i = 1$ if $x_i \neq y_i$.

A function $f : (\mathbb{Z}_2)^n \to (\mathbb{Z}_2)^n$ is called a function f on $(\mathbb{Z}_2)^n$. A function f on $(\mathbb{Z}_2)^n$ is said to be a *T*-function(short for a triangular function) if for each $k \in \{1, 2, \dots, n\}$ the k-th bit $[f(x)]_{k-1}$ of an n-bit word f(x) depends only on the first k bits $[x]_0, [x]_1, \dots, [x]_{k-1}$ of an n-bit word x.

A sequence $a_0, a_1, \dots, a_m, \dots$ of *n*-bit words in \mathbb{Z}_{2^n} is said to be of *period* l if there is the least positive integer l such that $a_{i+l} = a_i$ for every nonnegative integer i. Now, for a given function f on \mathbb{Z}_{2^n} and a nonnegative integer i, we define a function $f^i : \mathbb{Z}_{2^n} \to \mathbb{Z}_{2^n}$ by

$$f^{i}(x) = \begin{cases} x & \text{if } i = 0\\ f(f^{i-1}(x)) & \text{if } i \ge 1 \end{cases}$$

If f is a T-function on \mathbb{Z}_{2^n} , then so is f^i for every nonnegative integer i. Hence, if f is a bijective T-function on \mathbb{Z}_{2^n} , then so is f^i for every nonnegative integer i. An n-bit word a of \mathbb{Z}_{2^n} is said to have a cycle of period l in a T-function f on \mathbb{Z}_{2^n} if l is the least positive integer such that $f^l(a) = a$. If a has a cycle of period l in f, then a is said to generate a sequence $a = a_0, a_1, \dots, a_{l-1}, \dots$ of period l, where $a_i = f^i(a)$ for each nonnegative integer i. It is easy to show that every word $a_i(0 \le i \le l-1)$ has a cycle of period l is called a fixed word.

For example, let f(x) = 3x + 2 on \mathbb{Z}_{2^3} . Then 3, 7 are fixed words, 2 generates a sequence 2, 0, 2, 0, \cdots and 1 generates a sequence 1, 5, 1, 5, \cdots .

A T-function f on \mathbb{Z}_{2^n} is said to have a single cycle property if there is an *n*-bit word which has a cycle of period 2^n . A T-function f on \mathbb{Z}_{2^n} with a single cycle property is called a single cycle *T*-function on \mathbb{Z}_{2^n} . From this definition if f is a single cycle T-function on \mathbb{Z}_{2^n} , then every

word of \mathbb{Z}_{2^n} has a cycle of period 2^n and f is a bijective T-function on \mathbb{Z}_{2^n} .

EXAMPLE 1.2. Let f be a function on \mathbb{Z}_{2^3} defined by f(x) = 5x + 3. Then f(0) = 3, f(3) = 2, f(2) = 5, f(5) = 4, f(4) = 7, f(7) = 6, f(6) = 1and f(1) = 0. Hence 0 generates a sequence 0, 3, 2, 5, 4, 7, 6, 1, 0, \cdots of period 8. Hence f is a single cycle T-function on \mathbb{Z}_{2^3} . If we represent an element of \mathbb{Z}_{2^3} as an element of $(\mathbb{Z}_2)^3$ in an above sequence, then (0,0,0) generates a sequence (0,0,0), (0,1,1), (0,1,0), (1,0,1), (1,0,0), (1,1,1), (1,1,0), (1,0,0), (0,0,0), \cdots of period 8, which may be considered as a binary sequence of period 3×2^3 :

$000011010101100111110001000\cdots$

2. The number of T-functions

As we know, a boolean function on $(\mathbb{Z}_2)^n$ is a function from $(\mathbb{Z}_2)^n$ to \mathbb{Z}_2 . We can also represent a function on $(\mathbb{Z}_2)^n$ as *n* boolean functions on $(\mathbb{Z}_2)^n$. Let *f* be a function on $(\mathbb{Z}_2)^n$ defined by f(x) = y, where $x, y \in (\mathbb{Z}_2)^n$. If $x = (x_0, x_1, \cdots, x_{n-1})$ and $y = (y_0, y_1, \cdots, y_{n-1})$, then $y_i = [y]_i = [f(x)]_i = [f(x_0, x_1, \cdots, x_{n-1})]_i$ for all integers $i = 0, 1, \cdots, (n-1)$. We usually denote by $x_i = [x]_i, y_i = [y]_i = [f(x)]_i = f_i(x)$ and $f = (f_0, f_1, \cdots, f_{n-1})$, where f_i is a boolean function on $(\mathbb{Z}_2)^{i+1}$. If *f* is a T-function on $(\mathbb{Z}_2)^n$, then $[f(x)]_i = f_i([x]_0, [x]_1, \cdots, [x]_i)$ for every nonnegative integer *i*.

Let $\alpha_0(x) = 1$ be the constant function, and let α_i define a boolean function on $(\mathbb{Z}_2)^i$ for each positive integer *i*. For any real number *a*, we define an integer [*a*] by the greatest integer which is not greater than *a*.

The following two results are well known in [4].

PROPOSITION 2.1. A function f on $(\mathbb{Z}_2)^n$ is a single cycle T-function if and only if for every nonegative integer i < n the (i + 1)-th bit of the output f(x) can be represented as

$$[f(x)]_i = [x]_i \oplus \alpha_i([x]_0, [x]_1, \cdots, [x]_{i-1})$$

for some boolean function α_i on $(\mathbb{Z}_2)^i$ satisfying $\alpha_0(x) = 1$ and $\bigoplus_{x=0}^{2^i-1} \alpha_i(x) = 1$.

PROPOSITION 2.2. A polynomial f(x) is a single cycle T-function on $(\mathbb{Z}_2)^n$ for any positive integer n if and only if it is a single cycle T-function on $(\mathbb{Z}_2)^3$.

PROPOSITION 2.3. The number of all single cycle T-functions on $(\mathbb{Z}_2)^n$ is 2^{2^n-n-1} .

Proof. By Proposition 2.1 for each single cycle T-function f on $(\mathbb{Z}_2)^n$ there are boolean functions $\alpha_0, \dots, \alpha_{n-1}$ such that $\alpha_0(x) = 1$ and $\bigoplus_{x=0}^{2^i-1} \alpha_i(x) = 1$ for all $i = 1, 2, \dots, n-1$. Note that $\alpha_0(x) = 1$ and $\alpha_i(x)$ is an algebraic normal form of $[x]_0, [x]_1, \dots, [x]_{i-1}$, which is $\alpha_i(x) = c \oplus c_0[x]_0 \oplus c_1[x]_1 \oplus \dots \oplus c_{i-1}[x]_{i-1} \oplus c_{0,1}[x]_0[x]_1 \oplus \dots \oplus c_{0,1,\dots,(i-1)}[x]_0[x]_1 \dots [x]_{i-1}$ for each $i \geq 1$. So there are 2^i coefficients in $\alpha_i(x)$. Since $\bigoplus_{x=0}^{2^i-1} \alpha_i(x) = c_{0,1,\dots,(i-1)} = 1$, all coefficients except $c_{0,1,\dots,(i-1)}$ are arbitrary. Hence the number of all boolean functions α_i on $(\mathbb{Z}_2)^i$ satisfying $\bigoplus_{x=0}^{2^i-1} \alpha_i(x) = 1$ is 2^{2^i-1} . Let T_n be the number of all single cycle T-functions on $(\mathbb{Z}_2)^n$. Note that T_n depends on the number of the functions α_i for all $i = 0, 1, \dots, n-1$. Since $\{\alpha_0, \alpha_1, \dots, \alpha_{n-1}\}$ is independent for each i we get

$$T_n = \prod_{i=1}^{n-1} \text{the number of } \alpha_i$$
$$= \prod_{i=1}^{n-1} 2^{2^i - 1} = 2^{2^1 + 2^2 + \dots + 2^{n-1} - (n-1)} = 2^{2^n - n - 1}.$$

PROPOSITION 2.4. Let f be a function on \mathbb{Z}_{2^n} defined by f(x) = ax + b. Then f is a single cycle T-function if and only if $a \equiv 1 \mod 4$ and $b \equiv 1 \mod 2$. Consequently, the number of single cycle affine T-functions on \mathbb{Z}_{2^n} is 2^{2n-3} , where $n \geq 2$.

Proof. By Proposition 2.2 f(x) = ax + b is a single cycle T-function on \mathbb{Z}_{2^n} if and only if it is a single cycle T-function on \mathbb{Z}_{2^3} . If f is a single cycle T-function on \mathbb{Z}_{2^3} , then by Proposition 2.1 $[f(x)]_i = [x]_i \oplus \alpha_i(x)$ with $\bigoplus_{x=0}^{2^i-1} \alpha_i(x) = 1$ for all i = 0, 1, 2. If i = 0, then $[f(x)]_0 = [ax + b]_0 = [a]_0[x]_0 \oplus [b]_0$. Hence both a and b are odd. If i = 1, then $\alpha_1(x) = [a]_1[x]_0 \oplus [b]_1 \oplus [\frac{f_0(x)}{2}]$, where $f_0(x_0) = [x]_0 \oplus 1$. Note that $\bigoplus_{x=0}^{2^{1-1}} \alpha_1(x) = [a]_1 \oplus 1$. Hence $[a]_1 = 0$ and $[b]_1$ is arbitrary. If i = 2, then $\alpha_2(x) = [a]_2[x]_0 \oplus [b]_2 \oplus [\frac{f_1(x)}{2}]$, where $f_1(x) = [x]_1 \oplus [b]_1 \oplus [\frac{f_0(x)}{2}]$. Note that $\bigoplus_{x=0}^{2^{2-1}} \alpha_2(x) = 1$. Hence $[a]_2, [b]_1$, and $[b]_2$ are arbitrary. Hence $a \equiv 1 \mod 4$ and $b \equiv 1 \mod 2$. Conversely, if $a \equiv 1 \mod 4$ and $b \equiv 1 \mod 2$, then it is clear that f is a single cycle T-function on \mathbb{Z}_{2^3} .

mod 2^n for every element x in \mathbb{Z}_{2^n} . By substituting x = 0 we get b = b' in \mathbb{Z}_{2^n} . Hence a = a' in \mathbb{Z}_{2^n} . Therefore, the number of single cycle affine T-functions on \mathbb{Z}_{2^n} is $2^{n-2}2^{n-1} = 2^{2n-3}$, where $n \ge 2$.

PROPOSITION 2.5. Let f be a function on \mathbb{Z}_{2^n} defined by $f(x) = ax^2 + bx + c$. Then f is a single cycle T-function if and only if a, b and c in \mathbb{Z}_{2^n} satisfy one of the following:

- (i) $a \equiv 0 \mod 4$, $b \equiv 1 \mod 4$ and $c \equiv 1 \mod 2$.
- (ii) $a \equiv 2 \mod 4$, $b \equiv 3 \mod 4$ and $c \equiv 1 \mod 2$.

Proof. By Proposition 2.2 f is a single cycle T-function on \mathbb{Z}_{2^n} if and only if it is a single cycle T-function on \mathbb{Z}_{2^3} . If f is a single cycle T-function on \mathbb{Z}_{2^3} , then by Proposition 2.1 $[f(x)]_i = f_i([x]_0, \cdots, [x]_i) =$ $[x]_i \oplus \alpha_i(x)$ with $\bigoplus_{x=0}^{2^i-1} \alpha_i(x) = 1$ for all i = 0, 1, 2. If i=0, then $[f(x)]_0 =$ $[ax^2 + bx + c]_0 = ([a]_0 \oplus [b]_0)[x]_0 \oplus [c]_0$. Hence both a + b and c are odd. If i = 1, then $[f(x)]_1 = [ax^2 + bx + c]_1 = [b]_0[x]_1 \oplus \alpha_1(x)$. So $[b]_0 = 1$ and so $[a]_0 = 0$. Note that $\alpha_1(x) = ([a]_1 \oplus [b]_1)[x]_0 \oplus [c]_1 \oplus [\frac{f_0(x)}{2}]$ where $f_0(x) = [x]_0 \oplus 1$. Since $\bigoplus_{x=0}^{2^{1}-1} \alpha_1(x) = [a]_1 \oplus [b]_1 \oplus 1 = 1$. Hence $[a]_1 \oplus [b]_1$ is even and $[c]_1$ is arbitrary. If i = 2, then $[f(x)]_2 = [ax^2 + bx + c]_2 =$ $[x]_2 \oplus \alpha_2(x)$, where $\alpha_2(x) = ([a]_2 \oplus [b]_2)[x]_0 \oplus [b]_1[x]_1 \oplus [c]_2 \oplus [\frac{[f(x)]_1}{2}]$. Note that $\bigoplus_{x=0}^{2^2-1} \alpha_2(x) = 1$ for any arbitrary $[a]_1, [a]_2, [b]_1, [b]_2, [c]_2$ and $[c]_2$. Hence we have the following two cases:

- (i) $a \equiv 0 \mod 4$, $b \equiv 1 \mod 4$ and $c \equiv 1 \mod 2$.
- (ii) $a \equiv 2 \mod 4$, $b \equiv 3 \mod 4$ and $c \equiv 1 \mod 2$.

Conversely, suppose that above two cases hold. Then it is clear that f is a single cycle T-function on \mathbb{Z}_{2^3} . Hence f is a single cycle T-function on \mathbb{Z}_{2^n} .

PROPOSITION 2.6. Let $f(x) = ax^2 + bx + c$ be a T-function on \mathbb{Z}_{2^n} , where $n \geq 3$. Then f(x) is a single cycle T-function if and only if there are elements $a \in \mathbb{Z}_{2^{n-1}}$ and $b, c \in \mathbb{Z}_{2^n}$ which satisfy one of the following:

- (i) $a \equiv 0 \mod 4$, $b \equiv 1 \mod 4$ and $c \equiv 1 \mod 2$.
- (ii) $a \equiv 2 \mod 4$, $b \equiv 3 \mod 4$ and $c \equiv 1 \mod 2$.

Proof. Suppose that (i) and (ii) are satisfied. Then by Proposition 2.5 f(x) is a single cycle T-function. Conversely, let $f(x) = ax^2 + bx + c$ be a single cycle T-function on \mathbb{Z}_{2^n} . Then by Proposition 2.5 a, b and c in \mathbb{Z}_{2^n} satisfy one of the following:

(i) $a \equiv 0 \mod 4$, $b \equiv 1 \mod 4$ and $c \equiv 1 \mod 2$.

(ii) $a \equiv 2 \mod 4$, $b \equiv 3 \mod 4$ and $c \equiv 1 \mod 2$.

Since
$$2^{n-1}x(x-1) \equiv 0 \mod 2^n$$
 for every element x in \mathbb{Z}_{2^n} we get

$$(a+2^{n-1})x^2 + bx + c \equiv ax^2 + (b+2^{n-1})x + c \mod 2^n$$

for every element a in \mathbb{Z}_{2^n} . Hence every single cycle T-function with $a \geq 2^{n-1}$ can be replaced by $a - 2^{n-1}$. Hence every element can be assumed less than 2^{n-1} . So two conditions in Proposition 2.5 can be replaced by two conditions in Proposition 2.6.

In the process of the proof of Proposition 2.6 every single cycle Tfunction of the form $bx + c \mod 2^n$ can be replaced by a single cycle T-function of the form $2^{n-1}x^2 + (b+2^{n-1})x + c \mod 2^n$. Hence every single cycle T-function of degree 1 can be replaced by a single cycle T-function of degree 2.

PROPOSITION 2.7. Suppose that $ax^2 + bx + c \equiv a'x^2 + b'x + c' \mod 2^n$ for every element $x \in \mathbb{Z}_{2^n}$, where $a, a' \in \mathbb{Z}_{2^{n-1}}$ and $b, c, b', c' \in \mathbb{Z}_{2^n}$ satisfy one of the following:

(i) $a \equiv 0 \mod 4$, $b \equiv 1 \mod 4$ and $c \equiv 1 \mod 2$.

(ii) $a \equiv 2 \mod 4$, $b \equiv 3 \mod 4$ and $c \equiv 1 \mod 2$.

Then $a \equiv a' \mod 2^{n-1}$, $b \equiv b' \mod 2^n$ and $c \equiv c' \mod 2^n$. Consequently, the number of single cycle T-functions on \mathbb{Z}_{2^n} of degree $n \leq 2$ is 2^{3n-5} , where $n \geq 3$.

Proof. Suppose that $(a - a')x^2 + (b - b')x + (c - c') \equiv 0 \mod 2^n$ for every element $x \in \mathbb{Z}_{2^n}$. By substituting x = 0, we get $c \equiv c' \mod 2^n$. Hence $(a - a')x^2 + (b - b')x \equiv 0 \mod 2^n$ for every element $x \in \mathbb{Z}_{2^n}$. Without loss of generality we may assume $a \ge a'$. So $0 \le a - a' < 2^{n-1}$. By substituting x = 1 and x = -1, we get

 $(a - a') + (b - b') \equiv 0 \mod 2^n$ and $(a - a') - (b - b') \equiv 0 \mod 2^n$.

Hence $2(a - a') \equiv 0 \mod 2^n$ and so $a - a' \equiv 0 \mod 2^{n-1}$. Consequently, $b \equiv b' \mod 2^n$. Therefore, the number of single cycle T-functions of degree ≤ 2 is $2 \cdot 2^{n-3} 2^{n-2} 2^{n-1} = 2^{3n-5}$.

EXAMPLE 2.8. By Proposition 2.3 and Proposition 2.4 every single cycle T-function on \mathbb{Z}_{2^2} is a single cycle T-function of degree 1. Similarly by Proposition 2.3 and Proposition 2.7 every single cycle T-function on \mathbb{Z}_{2^3} may be expressed as a single cycle T-function of degree 2.

3. Single cycle T-functions generated by some elements

In Proposition 2.1 we explain that a function f on $(\mathbb{Z}_2)^n$ is a single cycle T-function if and only if for every nonegative integer i < n the (i+1)-th bit of the output f(x) can be represented as

 $[f(x)]_i = [x]_i \oplus \alpha_i$ for some boolean function α_i on $(\mathbb{Z}_2)^i$

satisfying $\alpha_0(x) = 1$ and $\bigoplus_{x=0}^{2^i-1} \alpha_i(x) = 1$. In this case we say that a function f is a single cycle *T*-function on \mathbb{Z}_{2^n} determined by $\alpha_0, \alpha_1, \cdots, \alpha_{n-1}$, where

 $\alpha_0(x) = 1$ and α_i is a boolean function on $(\mathbb{Z}_2)^i$

with $\bigoplus_{x=0}^{2^{i}-1} \alpha_i(x) = 1$ for every positive integer $i \leq n - 1 \cdots (*)$.

In this section we characterize single cycle T-functions determined by some special types of $\alpha_0, \alpha_1, \cdots, \alpha_{n-1}$ satisfying (*).

Let $x = a_{n-2}a_{n-3}\cdots a_1a_0$ be an element of $\mathbb{Z}_{2^{n-1}}$, and consider n boolean functions $\alpha_0, \alpha_1, \cdots, \alpha_{n-1}$ which are defined as follows:

$$\alpha_0(x) = 1, \text{ and}$$

$$\alpha_i(x) = \begin{cases} 1 & \text{if } x = a_{i-1}a_{i-2}\cdots a_0 \\ 0 & \text{if otherwise} \end{cases} \text{ for all } i = 1, 2, \cdots, n-1. \cdots \cdots (**)$$

Then $\alpha_0, \alpha_1, \dots, \alpha_{n-1}$ satisfy (*). We say that $\alpha_0, \alpha_1, \dots, \alpha_{n-1}$ satisfying (**) are *functions determined by* $a_{n-2}a_{n-3}\cdots a_1a_0$. For example, n functions $\alpha_0, \alpha_1, \dots, \alpha_{n-1}$ determined by $0 \cdots 0101$ are boolean functions as follows:

$$\alpha_0(x) = 1, \ \alpha_1(x) = \alpha_2(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{otherwise} \end{cases} \text{ and } \\ \alpha_i(x) = \begin{cases} 1 & \text{if } x = 5 \\ 0 & \text{otherwise} \end{cases} \text{ for all } i \ge 3. \end{cases}$$

A single cycle T-function determined by functions $\alpha_0, \alpha_1, \dots, \alpha_{n-1}$ satisfying (**) is shortly called *a single cycle T-function determined by* $a_{n-2}a_{n-3}\cdots a_1a_0$.

EXAMPLE 3.1. Let's consider a single cycle T-function generated by $0 = 00 \cdots 0$. Then $\alpha_0(x) = 1$ and $\alpha_i(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{otherwise} \end{cases}$ for all $i \ge 1$. If x is odd, then $\alpha_i(x) = 0$ for all $i \ge 1$. Hence $[f(x)]_0 = [x]_0 \oplus \alpha_0(x) = [x]_0 \oplus 1 = 0$ and $[f(x)]_i = [x]_i \oplus \alpha_i(x) = [x]_i$ for all $i \ge 1$. Hence $f(x) \equiv x - 1 \mod 2^n$. Clearly $f(0) \equiv 2^n - 1 \equiv x - 1 \mod 2^n$. If x is

nonzero even, then $x = x_{n-1} \cdots x_{k+1} 10 \cdots 0$ and

$$[f(x)]_i = [x]_i \oplus \alpha_i(x) = [x]_i \oplus \begin{cases} 1 & \text{if } i \le k \\ 0 & \text{if } i > k. \end{cases}$$

Hence $f(x) = x_{n-1} \cdots x_{k+1} 0 1 \cdots 1$ and $f(x) \equiv x - 1 \mod 2^n$. Therefore, $f(x) \equiv x - 1 \mod 2^n$.

EXAMPLE 3.2. Let's consider a single cycle T-function generated by $2^{n-1} - 1 = 11 \cdots 1$. Then $\alpha_0(x) = 1$ and $\alpha_i(x) = \begin{cases} 1 & \text{if } x = 2^i - 1 \\ 0 & \text{otherwise} \end{cases}$ for all $i \ge 1$. If x is even, then $\alpha_0(x) = 1$ and $\alpha_i(x) = 0$ for all $i \ge 1$. Hence $f(x) \equiv x + 1 \mod 2^n$. Clearly, $f(2^n - 1) = 0$. If x is odd, then $x = x_{n-1} \cdots x_{k+1} 01 \cdots 1$ and

$$[f(x)]_i = [x]_i \oplus \alpha_i(x) = [x]_i \oplus \begin{cases} 1 & \text{if } i \le k \\ 0 & \text{if } i > k \end{cases}$$

Hence $f(x) = x_{n-1} \cdots x_{k+1} 10 \cdots 0$ and $f(x) \equiv x+1 \mod 2^n$. Therefore, $f(x) \equiv x+1 \mod 2^n$.

Now, we characterize the single cycle T-function on \mathbb{Z}_{2^n} determined by an element $a_{n-2}a_{n-3}\cdots a_1a_0$ in $\mathbb{Z}_{2^{n-1}}$.

THEOREM 3.3. Let f be a single cycle T-function generated by $a = 2^{n-1} - 2^i$, where $1 \le i \le n-1$. Then

$$f(x) \equiv \begin{cases} x - 2a - 1 \mod 2^n & \text{if } x \equiv 0 \mod 2^i \\ x - 1 \mod 2^n & \text{otherwise} \end{cases}$$

Proof. If $a = 2^{n-1} - 2^i$, then $a_{n-2} = \cdots = a_i = 1$ and $a_{i-1} = \cdots = a_0 = 0$. Note that a single cycle T-function generated by a has n functions α_i as follows: $\alpha_0(x) = 1$, $\alpha_k(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{otherwise} \end{cases}$ for all k with $1 \le k \le i$ and $\alpha_k(x) = \begin{cases} 1 & \text{if } x = 2^k - 2^i \\ 0 & \text{otherwise} \end{cases}$ for all k > i. Let x = 0

 $x_{n-1} \cdots x_1 x_0$ and l be the least nonnegative integer such that $x_l \neq a_l$. If l < i, then $x_l = 1$ and $x_t = 0$ for all t < l. Hence

$$y_t = \begin{cases} x_t \oplus 1 & \text{if } t \le l \\ x_t & \text{if } t > l \end{cases}$$

and $f(x) \equiv x - 1 \mod 2^n$. If $l \ge i$, then $x_l = 0$ and $x_t = a_t$ for all t < l. Hence $y_t = \begin{cases} x_t \oplus 1 & \text{if } t \le l \\ x_t & \text{if } t > l \end{cases}$ and $f(x) \equiv x + 2^i + \cdots 2 + 1 \equiv x + 2^{i+1} - 1$ mod 2^n . If there is no l such that $x_l \ne a_l$, then $y_t = x_t \oplus 1$ for all t. Hence $f(x) \equiv x + 2^i + \cdots 2 + 1 \equiv x + 2^{i+1} - 1 \mod 2^n$. Note that $x \equiv 0$ mod 2^i if and only if $l \ge i$ or there is no l such that $x_l \ne a_l$. Since $2^{i+1} \equiv -2a \mod 2^n$, Theorem 3.3 holds.

EXAMPLE 3.4. Let n = 5 and i = 3. Then

$$f(x) = \begin{cases} x + 2^4 - 1 \mod 2^5 & \text{if } x \equiv 0 \mod 2^3 \\ x - 1 \mod 2^5 & \text{otherwise.} \end{cases}$$

Hence we have a sequence of period 2^5 as follows: 0, 15, 14, 13, 12, 11, 10, 9, 8, 23, 22, 20, 19, 18, 17, 16, 31, 30, 29, 28, 27, 26, 25, 24, 7, 6, 5, 4, 3, 2, 1, 0, \cdots

REMARK 3.5. Example 3.1 is the special case i = n - 1 in Theorem 3.3. If i = 0, then $x \equiv \mod 2^0$ for every integer x. Hence $f(x) \equiv x + 1 \mod 2^n$, which is shown in Example 3.2.

THEOREM 3.6. Let f be a single cycle T-function generated by $a = 2^i - 1$, where $0 < i \le n - 1$. Then

$$f(x) = \begin{cases} x + 1 \mod 2^n & \text{if } x \not\equiv -1 \mod 2^i \\ x - 2a - 1 \mod 2^n & \text{if } x \equiv -1 \mod 2^i. \end{cases}$$

Proof. Let $x = x_{n-1} \cdots x_1 x_0$ and let k be the least nonnegative integer such that $x_k \neq a_k$. If $x \not\equiv -1 \mod 2^i$, then k < i and

$$[f(x)]_l = \begin{cases} x_l \oplus 1 & \text{if } l \le k \\ x_l & \text{if } l \ge k+1. \end{cases}$$

Note that $f(\cdots x_{k+1}01\cdots 1) = \cdots x_{k+1}10\cdots 0$. Hence $f(x) \equiv x+1 \mod 2^n$. Assume that $x \equiv -1 \mod 2^i$. Then $k \geq i$ or there is no k such that $x_k \neq a_k$. If $k \geq i$, then $[f(x)]_l = \begin{cases} x_l \oplus 1 & \text{if } l \leq k \\ x_l & \text{if } l \geq k+1. \end{cases}$ Note that $f(\cdots x_{k+1}11\cdots 1) = \cdots x_{k+1}00\cdots 0$ if k = i and $f(\cdots x_{k+1}10\cdots 01\cdots 1) = \cdots x_{k+1}01\cdots 10\cdots 0$ if k > i. Hence $f(x) \equiv x - 2^{i+1} + 1 \mod 2^n$. Also, if there is no k such that $x_k \neq a_k$, then $y_t = x_t \oplus 1$ for all t. Hence $f(x) \equiv x + 2^{n-1} + \cdots + 2^{i+1} + 1 \mod 2^n$. Since $2^{i+1} \equiv 2a + 2 \mod 2^n$, Theorem 3.6 holds.

EXAMPLE 3.7. Let n = 5 and i = 1. Then

$$f(x) = \begin{cases} x + 1 \mod 2^5 & \text{if } x \equiv 0 \mod 2\\ x - 3 \mod 2^5 & \text{if } x \equiv 1 \mod 2. \end{cases}$$

Hence we have a sequence of period 2^5 as follows: 0, 1, 30, 31, 28, 29, 26, 27, 24, 25, 22, 23, 20, 21, 18, 19, 16, 17, 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 0, \cdots .

REMARK 3.8. Example 3.2 is the special case i = n - 1 in Theorem 3.6. Also, Example 3.1 is the special case i = 0 in Theorem 3.6.

THEOREM 3.9. Let f be a single cycle T-function generated by $a = 2^i$, where $0 \le i \le n-2$. Then

$$f(x) \equiv \begin{cases} x - 1 \mod 2^n & \text{if } x \neq 0 \mod 2^i \\ x + 2a - 1 \mod 2^n & \text{if } x \equiv 0 \mod 2^{i+1} \\ x - 2a - 1 \mod 2^n & \text{if } x \equiv 2^i \mod 2^{i+1}. \end{cases}$$

Proof. If i = 0, then by the case i = 1 in Theorem 3.6 ,

$$f(x) \equiv \begin{cases} x+1 \mod 2^n & \text{if } x \equiv 0 \mod 2\\ x-3 \mod 2^n & \text{if } x \equiv 1 \mod 2 \end{cases}, \text{ which is a special case } i=0$$

in this theorem. Let $x = x_{n-1} \cdots x_i \cdots x_0$. If $x \not\equiv 0 \mod 2^i$, then there is the least nonnegative integer k < i such that $x_k \neq a_k$. Note that

$$[f(x)]_l = \begin{cases} 1 \oplus x_l & \text{if } l \le k \\ x_l & \text{if } l > k \end{cases}$$

Hence $f(x) \equiv x - 1 \mod 2^n$. Suppose that $x \equiv 0 \mod 2^i$. If $x \equiv 0 \mod 2^{i+1}$, then $[f(x)]_l = \begin{cases} 1 \oplus x_l & \text{if } l \leq i \\ x_l & \text{if } l > i \end{cases}$ and so $f(x) \equiv x + 2^{i+1} - 1 \mod 2^i$. Suppose $x \equiv 2^i \mod 2^{i+1}$. Then we have two cases $x_{n-2} \cdots x_0 = a$ and $x_{n-2} \cdots x_0 \neq a$. If $x_{n-2} \cdots x_0 = a$, then $[f(x)]_l = 1 \oplus x_l$ for all l and $f(x) \equiv x - 2^{i+1} - 1 \mod 2^n$. If $x_{n-2} \cdots x_0 \neq a$, then there is the least nonnegative integer k > i such that $x_k \neq a_k$. Hence $x_i = 0 \neq a_i$ and so $[f(x)]_l = \begin{cases} 1 \oplus x_l & \text{if } l \leq k \\ x_l & \text{if } l > k \end{cases}$. Hence $f(x) \equiv x - 2^{i+1} - 1 \mod 2^n$. Therefore we have completely proved this theorem.

EXAMPLE 3.10. Let n = 5 and i = 1. Then

$$f(x) \equiv \begin{cases} x - 1 \mod 2^5 & \text{if } x \equiv 1 \mod 2\\ x + 3 \mod 2^5 & \text{if } x \equiv 0 \mod 2^2\\ x - 5 \mod 2^5 & \text{if } x \equiv 2 \mod 2^2. \end{cases}$$

Hence we have a sequence of period 2^5 as follows: 0, 3, 2, 29, 28, 31, 30, 25, 24, 27, 26, 21, 20, 23, 22, 17, 16, 19, 18, 13, 12, 15, 14, 9, 8, 12, $15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, \cdots$

THEOREM 3.11. Let f be a single cycle T-function generated by a = $2^{i+1} + 2^i$, where $0 \le i \le n - 3$. Then

$$f(x) \equiv \begin{cases} x - 1 \mod 2^n & \text{if } x \not\equiv 0 \mod 2^i \\ x - 2a - 1 \mod 2^n & \text{if } x \equiv a \mod 2^{i+2} \\ x + 2^{i+1} - 1 \mod 2^n & \text{otherwise.} \end{cases}$$

Proof. If i = 0, then by the case i = 2 in Theorem 3.6 $\begin{cases} r+1 \mod 2^n & \text{if } r \neq 3 \mod 2^2 \end{cases}$

$$f(x) \equiv \begin{cases} x+1 \mod 2^n & \text{if } x \not\equiv 3 \mod 2^2 \\ x-7 \mod 2^n & \text{if } x \equiv 3 \mod 2^2 \end{cases}$$
, which is a special case $i = 0$

in this theorem. Let $x = x_{n-1} \cdots x_i \cdots x_0$. If $x \neq 0 \mod 2^i$, then by Theorem 3.9 $f(x) \equiv x - 1 \mod 2^n$. Suppose that $x \equiv a \mod 2^{i+2}$. If $x \neq a \mod 2^{n-1}$ then there is the least positive integer l > i+1 such that $x_l = 1$. Hence

$$x_k = \begin{cases} x_k \oplus 1 & \text{for all } k \le l \\ x_k & \text{for all } k > l. \end{cases}$$

Hence $f(x) \equiv x - 2a - 1 \mod 2^n$. If $x \equiv a \mod 2^{n-1}$, then clearly $f(x) \equiv x - 2a - 1 \mod 2^n$. Now, it remains to show the case satisfying both $x \equiv a \mod 2^i$ and $x \not\equiv a \mod 2^{i+2}$. That is, there are two cases : $x = x_{n-1} \cdots x_{i+2} 0 1 0 \cdots 0$ and $x = x_{n-1} \cdots x_{i+2} 1 0 \cdots 0$. We can easily get $f(x) \equiv x + 2^{i+1} - 1 \mod 2^n$. Therefore Theorem 3.11 holds.

THEOREM 3.12. Let f be a single cycle T-function generated by a = $2^{n-1} - 2^i - 1$, where $0 \le i \le n - 2$. Then

$$f(x) \equiv \begin{cases} x+1 \mod 2^n & \text{if } x \not\equiv -1 \mod 2^i \\ x-2a-1 \mod 2^n & \text{if } x \equiv 2^i-1 \mod 2^{i+1} \\ x+2a+3 \mod 2^n & \text{if } x \equiv -1 \mod 2^{i+1}. \end{cases}$$

Proof. If i = 0, then by the case i = 1 in Theorem 3.3

 $f(x) \equiv \begin{cases} x+3 \mod 2^n & \text{if } x \equiv 0 \mod 2\\ x-1 \mod 2^n & \text{otherwise} \end{cases}, \text{ which is a special case } i = 0$ in this theorem. Let $x = x_{n-1} \cdots x_i \cdots x_0$. If $x \not\equiv -1 \mod 2^i$, then there is the least nonnegative integer k < i such that $x_k \neq a_k$. Note that $[f(x)]_l = \begin{cases} 1 \oplus x_l & \text{if } l \le k \\ x_l & \text{if } l > k. \end{cases}$ Hence $f(x) \equiv x + 1 \mod 2^n$. Suppose

that $x \equiv -1 \mod 2^i$. Then we consider two cases $x \equiv 2^i - 1 \mod 2^{i+1}$ and $x \equiv -1 \mod 2^{i+1}$. If $x \not\equiv a \mod 2^{n-1}$, then there is the least nonnegative integer $k \geq i$ such that $x_k \neq a_k$. If k = i, then $x_i = 1 \neq a_i$ and so

$$[f(x)]_l = \begin{cases} 1 \oplus x_l & \text{if } l \le i \\ x_l & \text{if } l > i \end{cases}$$

Hence $f(x) \equiv x - 2^{i+1} + 1 \mod 2^n$. If k > i, then $x_k = 1 \neq a_k$ and so

$$[f(x)]_l = \begin{cases} 1 \oplus x_l & \text{if } l \le k \\ x_l & \text{if } l > k. \end{cases}$$

Hence $f(x) \equiv x + 2^{i+1} + 1 \mod 2^n$. If $x \equiv a \mod 2^{n-1}$, then $[f(x)]_l \equiv 1 \oplus x_l$, then for all l. Hence $f(x) \equiv x + 2^{i+1} + 1 \mod 2^n$. \Box

THEOREM 3.13. Let f be a single cycle T-function generated by $a = 2^{n-1} - 2^{i+1} - 2^i - 1$, where $0 \le i \le n-3$. Then

$$f(x) \equiv \begin{cases} x+1 \mod 2^n & \text{if } x \not\equiv -1 \mod 2^i \\ x-2a+3 \mod 2^n & \text{if } x \equiv -1 \mod 2^{i+1} \\ x-2a-1 \mod 2^n & \text{if } x \equiv 2^i-1 \mod 2^{i+1}. \end{cases}$$

 $\begin{array}{l} Proof. \mbox{ If } i=0, \mbox{ then } a=2^{n-1}-2^2. \mbox{ Hence by the case } i=2 \mbox{ in Theorem 3.3 } f(x) \equiv \begin{cases} x+7 \mbox{ mod } 2^n \mbox{ if } x\equiv 0 \mbox{ mod } 2^2 \mbox{ } x-1 \mbox{ mod } 2^n \mbox{ otherwise } \end{cases}, \mbox{ which is a special case } i=0 \mbox{ in this theorem. Let } x=x_{n-1}\cdots x_i\cdots x_0. \mbox{ If } x\not\equiv a \mbox{ mod } 2^{n-1}, \mbox{ then there is the least nonnegative integer } k\leq n-2 \mbox{ such that } x_k\not\equiv a_k. \mbox{ In this case } [f(x)]_l = \begin{cases} 1\oplus x_l \mbox{ if } l\leq k \mbox{ } x_l \mbox{ if } l>k. \mbox{ If } k\leq i-1, \mbox{ then } x=x_{n-1}\cdots x_i 101\cdots 1 \mbox{ and } f(x)=x_{n-1}\cdots x_i 110\cdots 0. \mbox{ Hence } f(x)\equiv x+1 \mbox{ mod } 2^n. \mbox{ If } k=i, \mbox{ then } x=x_{n-1}\cdots x_{i+1}000\cdots 0. \mbox{ Hence } f(x)=x-2^{i+1}+1 \mbox{ mod } 2^n. \mbox{ If } k=i+1, \mbox{ then } x=x_{n-1}\cdots x_{i+2}010\cdots 0. \mbox{ Hence } f(x)=x_{n-1}\cdots x_{i+2}010\cdots 0. \mbox{ Hence } f(x)\equiv x-2^{i+1}+1 \mbox{ mod } 2^n. \mbox{ If } k>i+1, \mbox{ then } x=x_{n-1}\cdots x_{i+2}001\cdots 1 \mbox{ and } f(x)=x_{n-1}\cdots x_{i+2}010\cdots 0. \mbox{ Hence } f(x)\equiv x-2^{i+1}+1 \mbox{ mod } 2^n. \mbox{ If } k>i+1, \mbox{ then } x=x_{n-1}\cdots x_{i+2}001\cdots 1 \mbox{ and } f(x)=y_{n-1}\cdots y_{i+2}110\cdots 0, \mbox{ where } y_l=x_l\oplus 1 \mbox{ for all } l\leq k \mbox{ and } y_l=x_l=1 \mbox{ for all } l>k. \mbox{ Hence } f(x)\equiv x+2^{i+2}+2^{i+1}+1\equiv x-2a-1 \mbox{ mod } 2^n. \end{tabular}$

REMARK 3.14. We get 3 sequences in Example 3.4, Example 3.7 and Example 3.10. Even though finding functions that generate 3 sequences is not hard, compared to the other 2 sequences, it could be difficult to find a function that generates the sequence in Example 3.10. In general it

is hard to find a function from a sequence by generated general functions $\alpha_1, \dots, \alpha_{n-1}$. It is important in stream ciphers to obtain a function that generates a random number sequence generated by the given suitable functions $\alpha_1, \dots, \alpha_{n-1}$. It is one of the valuable topics which will be studied in future.

References

- A. Kilmov, Applications of T-functions in Cryptography, Ph.D. Thesis Weizmann Institute Science, 2005.
- [2] A. Kilmov and A. Shamir, Applications of T-functions in Cryptography, 2005.
- [3] A. Kilmov and A. Shamir, A New Class of Invertible Mappings, CHES 2002, LNCS 2523, 470-483, 2003.
- [4] A. Kilmov and A. Shamir, Cryptographic Applications of T-functions, SAC 2003, LNCS 3006, 248-261, 2004.
- [5] A. Kilmov and A. Shamir, New Cryptographic Primitives Based on Multiword T-Functions, FSE 2004, LNCS 3017, 1-15, 2004.
- [6] A. Kilmov and A. Shamir, New Applications of T-functions in Block Ciphers and Hash Functions, FSE 2005, LNCS 3557, 18-31, 2005.
- [7] M. S. Rhee, On a characterization of T-function with on cycle property, J. of the Chungcheong Math. Soc. **21** (2008), no. 2, 259-268.
- [8] M. S. Rhee, On secure binary sequences generated by a function $f(x) = x + (g(x)^2 \vee C) \mod 2^n$, J. of the Chungcheong Math. Soc. **22** (2009), no. 4, 777-789.

*

Department of Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: msrhee@dankook.ac.kr