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ON SINGLE CYCLE T-FUNCTIONS GENERATED BY
SOME ELEMENTS
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ABSTRACT. Invertible transformations over n-bit words are essen-
tial ingredients in many cryptographic constructions. When n is
large such invertible transformations are usually represented as a
composition of simpler operations such as linear functions, S-P net-
works, Feistel structures and T-functions. Among them we study
T-functions which are probably invertible transformations and are
very useful in stream ciphers. In this paper we study the number of
single cycle T-functions satisfying some conditions and characterize
single cycle T-functions on (Z2)" generated by some elements in
(Z2)" 1.

1. Introduction

There are many researches about T-functions since Klimov and Shamir
have first proposed a T-function to construct MDS maps in block ci-
phers[6] in order to resist differential attacks. They are also used in
stream ciphers to overcome LFSR’s shortcoming.

Let (Z2)™ = {(x0,z1, -+ ,Zn—1) | xi € Za} be the set of all n-tuples
of elements in Zy = {0,1}, where n is a positive integer. An ele-
ment of Zsg is called a bit and an element of (Zg)" is called an n-
bit word. Let [x];—1 be the i-th bit from the left end of n-bit word

x. Then x = ([z]o, [x]1, - ,[x]n—1). In particular, the first bit [z]g
of x is called the least bit of x. It is often useful to express an ele-
ment ([z]o, [z]1, -, [x]n—1) of (Z2)™ as an element Z:-L;Ol[x]ﬂi of Zaon.

In this expression every element of (Zg)™ is considered as an element
of Zgon and vice versa, where Zon is the congruence ring modulo 2".
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Consequently (Z2)" is considered as Zon and vice versa. So an ele-
ment of Zon can be considered as an n-bit word. For example, an 8-
bit word (1,1,0,1,0,0,1,0) of (Z2)® is considered as an element 75 of
Zgs = Zos6 and an element 135 of Zos is considered as an 8-bit word
(1,1,1,0,0,0,0,1) of (Zs)8.

DEFINITION 1.1. For any n-bit words z = (zg,z1, - ,Zn—1) and
y=(Y0,Y1,"** ,Yn—1) Of Zon we define the following binary operations:

(1) x £y and zy are defined as  + y mod 2" and zy mod 2" ,
respectively.
(2) x @y is defined as (29,21, - ,2n—1), where z; = 0 if z; = y; and

A function f : (Z9)™ — (Z2)™ is called a function f on (Zo)". A
function f on (Z9)™ is said to be a T-function(short for a triangular
function) if for each k € {1,2,--- ,n} the k-th bit [f(x)]x_1 of an n-bit
word f(x) depends only on the first k bits [z]o, [x]1, -, [x]x_1 of an
n-bit word x.

A sequence ag, a1, ,Qm, -+ of n-bit words in Zs» is said to be of
period [ if there is the least positive integer [ such that a;4; = a; for
every nonnegative integer ¢ . Now, for a given function f on Zs» and a
nonnegative integer i, we define a function f?: Zon — Zon by

i [ iti=0
Fe) {f(f"‘l(w)) ifi>1

If f is a T-function on Zo», then so is f* for every nonnegative integer
i. Hence, if f is a bijective T-function on Zsn, then so is f* for every
nonnegative integer i. An n-bit word a of Zon is said to have a cycle of
period [ in a T-function f on Zgn if [ is the least positive integer such
that f!(a) = a. If a has a cycle of period [ in f, then a is said to generate
a sequence a = ag,ay, - ,a;_1,--- of period I, where a; = f*(a) for each
nonnegative integer . It is easy to show that every word a;(0 <1i <[—1)
has a cycle of period [ if ag has a cycle of period [. In particular, a word
which has a cycle of period 1 is called a fixed word.

For example, let f(x) = 3z 4+ 2 on Zys. Then 3, 7 are fixed words, 2
generates a sequence 2, 0, 2, 0, --- and 1 generates a sequence 1, 5, 1,
5, ce-

A T-function f on Zs» is said to have a single cycle property if there
is an n-bit word which has a cycle of period 2". A T-function f on Zon
with a single cycle property is called a single cycle T-function on Zon.
From this definition if f is a single cycle T-function on Zgan, then every
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word of Zon has a cycle of period 2" and f is a bijective T-function on
Zion .

EXAMPLE 1.2. Let f be a function on Zgs defined by f(z) = 5x + 3.
Then £(0) = 3, f(3) = 2, £(2) = 5, f(5) = 4, f(4) = 7, f(T) = 6, f(6) =
and f(1) = 0. Hence 0 generates a sequence 0, 3, 2, 5, 4, 7, 6, 1, 0,

- of period 8. Hence f is a single cycle T-function on Zgs. If we rep-
resent an element of Zys as an element of (Z3)? in an above sequence,
then (0,0,0) generates a sequence (0,0,0), (0,1,1), (0,1,0), (1,0,1), (1,0,0),
(1,1,1), (1,1,0), (1,0,0), (0,0,0), - - - of period 8, which may be considered
as a binary sequence of period 3 x 23:

000011010101100111110001000 - - -

2. The number of T-functions

As we know, a boolean function on (Z2)" is a function from (Zsz)™ to
Zs. We can also represent a function on (Z3)™ as n boolean functions on
(Z2)™. Let f be a function on (Zy)"™ defined by f(z) = y, where z,y €
(Zo)". It & = (wo, @1, ,&n—1) and y = (yo,y1,"* ,Yn—1), then y; =
[yli = [f(2))i = [f(x0, 21, ,xn—1)]; for all integersi = 0,1,---,(n—1).

We usually denote by z; = [z];, vi = [yl = [f(z)]; = fi(x) and f =
(fo, f1,-* » fa—1), where f; is a boolean function on (Zg)l“. If fis
a T-function on (Z2)", then [f(z)]; = fi([x]o,[z]1, - ,[x]i) for every

nonnegative integer .

Let ap(x) = 1 be the constant function, and let «; define a boolean
function on (Zy)® for each positive integer i. For any real number a. we
define an integer [a] by the greatest integer which is not greater than a.

The following two results are well known in [4].

PROPOSITION 2.1. A function f on (Zy)" is a single cycle T-function
if and only if for every nonegative integer i < n the (i + 1)-th bit of the
output f(z) can be represented as

[f(@)]; = [z]i & ci([z]o, [, - -+, [w]i1)
for some boolean function «; on (Zy)" satisfying ag(x) =1 and
B: ) ailx) = 1.
PROPOSITION 2.2. A polynomial f(x) is a single cycle T-function

n (Zo)"™ for any positive integer n if and only if it is a single cycle
T-function on (Zz)3.
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PrOPOSITION 2.3. The number of all single cycle T-functions on
(Zo)" is 22" =1,

Proof. By Proposition 2.1 for each single cycle T-function f on (Zg)"

thelje are boolean functions ag,---,a,—1 such that ap(z) = 1 and
@i;_ol aj(z) = 1 for all i = 1,2,--- ,;n — 1. Note that ap(z) = 1
and «;(x) is an algebraic normal form of [z]o, [z]1,- -~ ,[z]i—1, which

is ai(z) = c® colzlo ® cafz]r & - ® ciaz]ica @ conlzlolzh & - @
€01, (i—1)[x]o[z]1 - - - [x]i—1 for each i > 1. So there are 2' coefficients
in a;(x). Since @i;_ol ai(r) = co1,.. (i-1) = 1, all coefficients except
Co,1,-(i—1) are arbitrary. Hence the number of all boolean functions «;
on (Zs)* satisfying @:25;01 a;(z) = 1is 22 ~1. Let T}, be the number of all
single cycle T-functions on (Zg)™. Note that T}, depends on the number
of the functions «; for all ¢ = 0,1,--- ,n — 1. Since {ag, 1, ,an_1}
is independent for each i we get

n—1

T, = H the number of «;
i=1

n—1
_ H 22i—1 _ 221+22+-~~+2"_1—(n—1) — 92"-n-1
=1

O

PROPOSITION 2.4. Let f be a function on Zon defined by f(x) =
ax +b. Then f is a single cycle T-function if and only if a = 1 mod
4 and b = 1 mod 2. Consequently, the number of single cycle affine
T-functions on Zon is 22773, where n > 2.

Proof. By Proposition 2.2 f(x) = ax + b is a single cycle T-function
on Zon if and only if it is a single cycle T-function on Zgs. If f is a single
cycle T-function on Z,s, then by Proposition 2.1 [f(z)]; = [z]; ® ai(z)
with @52;;01 ai(z) =1forall i =0,1,2. If i = 0, then [f(x)]o = [ax +
blo = [a]olz]o @® [b]o. Hence both a and b are odd. If i = 1, then
ai(z) = lahfzlo ® [l ® [P4], where fo(zo) = [z]o ® 1. Note that
@21:_01 ai(z) = [a]1 ® 1. Hence [a]; = 0 and [b]; is arbitrary. If i = 2,
then as(z) = [ala[z]o & o] & [£57], where f1(z) = [a]y & bl & (257

2
Note that @3;:_01 ag(z) = 1. Hence [a]o, [b]1, and [b]y are arbitrary.
Hence a = 1 mod 4 and b = 1 mod 2. Conversely, if a = 1 mod 4 and
b =1 mod 2, then it is clear that f is a single cycle T-function on Zgs.
Hence f is a single cycle T-function on Zgn. Now, assume az+b = a’x+b
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mod 2" for every element x in Zon. By substituting x = 0 we get b = b’
in Zon. Hence a = a’ in Zon. Therefore, the number of single cycle affine
T-functions on Zon is 2772271 = 22773 where n > 2. 0

PROPOSITION 2.5. Let f be a function on Zon defined by f(x) =
ax? + bx + c. Then f is a single cycle T-function if and only if a,b and
¢ in Zaon satisfy one of the following:

(i) a=0mod 4, b=1 mod 4 and ¢ = 1 mod 2.
(i) a =2 mod 4, b =3 mod 4 and ¢ = 1 mod 2.

Proof. By Proposition 2.2 f is a single cycle T-function on Zon if
and only if it is a single cycle T-function on Zys. If f is a single cycle
T-function on Zss, then by Proposition 2.1 [f(z)]; = fi([z]o,- -, [z]i) =
[]; B ai(z) with @2 ai(z) = 1for all i = 0,1,2. If i=0, then [f(z)]o =
[az? + bx + c]o = ([alo ® [blo)[z]o @ [c]o. Hence both a + b and ¢ are odd.
If i = 1, then [f(2)]1 = [a2® + bz + |1 = [blo[z]1 ® a1(z). So [b]o =1
and so [a]o = 0. Note that ai(x) = ([a]1 ® [b]1)[x]o ® [c]1 ® [%] where
folz) = [z)o®1. Since @' o1 (z) = [a] @B [b; &1 = 1. Hence [a]; &[b)y
is even and [c]; is arbitrary. If i = 2, then [f(x)]2 = [a2? + bz + ¢ =
(]2 ® az(x), where az(x) = ([als & [b]2)[zlo @ [Bh[2]1 & [cJ2 @ (L],
Note that @ii_ol ag(z) = 1 for any arbitrary [a]1, [al2, [b]1, [b]2, [¢]2 and
[c]2. Hence we have the following two cases:

(i) a=0mod 4, b=1 mod 4 and ¢ = 1 mod 2.

(i) a =2 mod 4, b =3 mod 4 and ¢ = 1 mod 2.

Conversely, suppose that above two cases hold. Then it is clear that
f is a single cycle T-function on Zy3. Hence f is a single cycle T-function
on Zon. ]

PROPOSITION 2.6. Let f(z) = az? + bz + ¢ be a T-function on Zan,
where n > 3. Then f(z) is a single cycle T-function if and only if there
are elements a € Zon—1 and b, c € Zon which satisfy one of the following:

(i) a=0mod 4, b=1 mod 4 and ¢ = 1 mod 2.
(i) a=2 mod 4, b =3 mod 4 and ¢ = 1 mod 2.

Proof. Suppose that (i) and (ii) are satisfied. Then by Proposition
2.5 f(x) is a single cycle T-function. Conversely, let f(x) = az?+bx +c
be a single cycle T-function on Zga». Then by Proposition 2.5 a,b and ¢
in Zon satisfy one of the following:

(i) a=0mod 4, b=1 mod 4 and ¢ = 1 mod 2.
(ii) e =2 mod 4, b =3 mod 4 and ¢ =1 mod 2.
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Since 2" '2(z — 1) = 0 mod 2" for every element z in Zon we get
(a42""NHa? 4+ bx +c=az? + (b+ 2" Nz + ¢ mod 2"

for every element a in Zgn. Hence every single cycle T-function with
a > 2" ! can be replaced by a — 2"~!. Hence every element can be
assumed less than 2"7!. So two conditions in Proposition 2.5 can be
replaced by two conditions in Proposition 2.6. ]

In the process of the proof of Proposition 2.6 every single cycle T-
function of the form bz 4+ ¢ mod 2" can be replaced by a single cycle
T-function of the form 2" 'z2 + (b + 2" Yz + ¢ mod 2". Hence every
single cycle T-function of degree 1 can be replaced by a single cycle
T-function of degree 2.

PROPOSITION 2.7. Suppose that ax? + bx + ¢ = a’2? + Vx + ¢ mod
2" for every element x € Zan, where a,a’ € Zon-1 and b,c,V',c € Zon
satisfy one of the following:
(i) a=0 mod 4, b=1 mod 4 and ¢ = 1 mod 2.
(i) a=2 mod 4, b= 3 mod 4 and ¢ = 1 mod 2.

Then a = ' mod 2!, b =V mod 2" and ¢ = ¢ mod 2". Consequently,
the number of single cycle T-functions on Zon of degree n < 2 is 23775,
where n > 3.

Proof. Suppose that (a —a’)z? + (b —V)z + (¢ — ¢) = 0 mod 2" for
every element x € Zon. By substituting 2 = 0, we get ¢ = ¢/ mod 2".
Hence (a — a')2? + (b — V) = 0 mod 2" for every element x € Zgn.
Without loss of generality we may assume a > a’. So 0 < a—a’ < 2" L.
By substituting x =1 and x = —1, we get

(a—a)+ (b—1)=0mod 2" and (a —a’) — (b—b") = 0 mod 2".

Hence 2(a — a’) = 0 mod 2" and so a — a’ = 0 mod 2"~!. Consequently,
b = b mod 2". Therefore, the number of single cycle T-functions of
degree < 2 is 2. 2n3gn—29n—1 — 93n=5, O

ExamMpLE 2.8. By Proposition 2.3 and Proposition 2.4 every single
cycle T-function on Zs2 is a single cycle T-function of degree 1. Similarly
by Proposition 2.3 and Proposition 2.7 every single cycle T-function on
Zqs may be expressed as a single cycle T-function of degree 2.
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3. Single cycle T-functions generated by some elements

In Proposition 2.1 we explain that a function f on (Z2)" is a single
cycle T-function if and only if for every nonegative integer i < n the
(i + 1)-th bit of the output f(z) can be represented as

[f(z)]; = [z]; ® a; for some boolean function «; on (Zs)

satisfying ap(z) = 1 and @3;;01 ai(z) = 1. In this case we say that a
function f is a single cycle T-function on Zgn determined by ag, o, -+,
1, Where
ao(z) =1 and q; is a boolean function on (Zs)°
with @3;:_01 a;(z) = 1 for every positive integer i <n —1------ (%).

In this section we characterize single cycle T-functions determined by
some special types of ag, a, -+, ap—1 satisfying (x).

Let © = ap—2an—3---a1ag be an element of Zgyn-1, and consider n
boolean functions aqg, a1, -+, a,_1 which are defined as follows:

ap(x) = 1,and

o) = 1 %fa; = ai—‘1az‘—2-..a0 foralli = 1,2, m—1. e (+)
0 if otherwise

Then g, o, -+, ap—1 satisfy (x). We say that ag, a1, -, ay_1 satis-
fying (xx) are functions determined by an,—2a,—3---ajag. For example,
n functions «ag, a1, -+, an—1 determined by 0---0101 are boolean func-
tions as follows:

1 ifax=1
ap(z) =1, aq(z) = as(z) = { and

0 otherwise

1 ifz=
ai(z) = n 5 for all < > 3.
0 otherwise

A single cycle T-function determined by functions ag,ay, -, a,—1
satisfying (xx) is shortly called a single cycle T-function determined by
ap—20n—3 - A100-

ExXAMPLE 3.1. Let’s consider a single cycle T-function generated by

1 ifz=0
0=00---0. Then ap(x) =1 and a;(z) = 0 lti . foralli>1.
otherwise

If x is odd, then «;(x) = 0 for all i > 1. Hence [f(z)]o = [z]o ® ap(z) =
[z]o @1 = 0 and [f(2)]; = [z} ® a;(x) = [z]; for all @ > 1. Hence
f(z) = x—1 mod 2". Clearly f(0) =2" —1=2z—1mod 2". If x is
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nonzero even, then r = xp_1---xx4+110---0 and

1 ifi<k

[f(w)]z = [ac]z @O&i(fﬂ) = [x]z @ {0 ifi> k.

Hence f(z) = xp—1---xk4+101---1 and f(x) = x —1 mod 2". Therefore,
f(x) =2 —1 mod 2™

ExXaMPLE 3.2. Let’s consider a single cycle T-function generated by
1 ife=2-1
27=1 — 1 =11---1. Then ag(z) =1 and o;(x) = n _ for
0 otherwise
all i > 1. If = is even, then ap(z) = 1 and «a;(x) = 0 for all 4 > 1.
Hence f(z) = x + 1 mod 2". Clearly, f(2" — 1) = 0. If z is odd, then

T =2ap—1 - -Tk101---1 and

1 ifi<k

(@) = [o]i ® () = [o]: & {o if i > k.

Hence f(z) = zp—1---2k4+110---0 and f(x) = x+ 1 mod 2". Therefore,
f(z) =2+ 1 mod 2".

Now, we characterize the single cycle T-function on Zor determined
by an element a,_2a,—3 - ajag in Zon-1.

THEOREM 3.3. Let f be a single cycle T-function generated by a =
2"~ — 2% where 1 <i<n— 1. Then

@) x—2a—1mod?2" ifz=0 mod?2!
z) = .
z — 1 mod 2™ otherwise

Proof. If @ = 21 —2°  then ap_o = -+ = a; = 1 and a;_1 =
- = ag = 0. Note that a single cycle T-function generated by a has
1 ifz=0

n functions «; as follows: ag(z) = 1, ax(x) = . for all k
0 otherwise

1 ifx=2F—2

with 1 < k < i and ag(z) = . ] for all k > i. Let x =
0 otherwise

Tp_1---x129 and [ be the least nonnegative integer such that z; # q;.

If I < i, then ; =1 and z; = 0 for all £ < [. Hence

o= Tt ift>1
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and f(xr) =2 —1 mod 2". If [ > 4, then x; = 0 and x; = a; for all t < [.

Hence y; = 2 @1 ?ftgl and f(z) =z +2'+---2+1=z+20H —1
Tt ift >1

mod 2™. If there is no [ such that x; # q;, then y = x; @ 1 for all ¢.

Hence f(z) =z +2+---2+1=2+2""" — 1 mod 2". Note that z =0

mod 2° if and only if [ > i or there is no [ such that z; # a;. Since

2+ = _24 mod 2", Theorem 3.3 holds. O

EXAMPLE 3.4. Let n =5 and ¢ = 3. Then
z+2*—1mod 2° if z=0mod 23
f(x) =

x — 1 mod 2° otherwise.

Hence we have a sequence of period 2° as follows: 0, 15, 14, 13, 12,
11, 10, 9, 8, 23, 22, 20, 19, 18, 17, 16, 31, 30, 29, 28, 27, 26, 25, 24, 7, 6,
57 47 37 27 17 07

REMARK 3.5. Example 3.1 is the special case # = n — 1 in Theorem
3.3. If i = 0, then = mod 2° for every integer z. Hence f(z) =z + 1
mod 2", which is shown in Example 3.2.

- THEOREM 3.6. Let f be a single cycle T-function generated by a =
2 — 1, where 0 < ¢ <n—1. Then

(@) x + 1 mod 2" if z # —1 mod 2
x) = .
x—2a—1mod2" ifr=-—1mod?2".

Proof. Let ¥ = xp_1 -+ x120 and let k be the least nonnegative inte-
ger such that zj # ag. If x Z —1 mod 2°, then k < ¢ and

[f(z)) = {xz ol ifl<k

T ifl>k+1.
Note that f(-- 2g4101---1) =+ 24110+ --0. Hence f(x) = x+1 mod
2™ Assume that £ = —1 mod 2°*. Then k£ > 7 or there is no k£ such
that xjp # If k > i, then [f(x)] u®l i<k Note that
x ay. 1, n [f(z)]; = )
k7R = T if1>k+1.

(e apgpq1l---1) = 244100 --0if k = iand f(--- xp4110---01---1) =
oo Zpy101---10---0 if k > i. Hence f(z) =z — 27+ + 1 mod 2". Also,
if there is no k such that z; # ai, then y; = x4 & 1 for all t. Hence
fx)=ax+20 "1 4. 207 41 = 2 — 201 11 mod 27. Since 20! = 2a+2
mod 2", Theorem 3.6 holds. O
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EXAMPLE 3.7. Let n =5 and i = 1. Then

x4+ 1mod 2° if z =0 mod 2
flz) = .
r—3mod?2° ifx=1mod 2.

Hence we have a sequence of period 2° as follows: 0, 1, 30, 31, 28, 29,
26, 27, 24, 25, 22, 23, 20, 21, 18, 19, 16, 17, 14, 15, 12, 13, 10, 11, 8, 9,
6,7,4,5 2 3,0, --- .

REMARK 3.8. Example 3.2 is the special case # = n — 1 in Theorem
3.6. Also, Example 3.1 is the special case i = 0 in Theorem 3.6.

THEOREM 3.9. Let f be a single cycle T-function generated by a = 27,
where 0 < ¢ <n —2. Then
x —1 mod 2" if z # 0 mod 2°
f(x) =< x+2a—1mod?2" ifr=0 mod?2*!
r—2a—1mod?2" ifx=2" mod 2t
Proof. If i = 0, then by the case ¢ = 1 in Theorem 3.6 ,
1 d2" ifz=0 d?2
f(z) = v+ lmo 1 . o , which is a special case i = 0
x—3mod 2" if x =1 mod 2

in this theorem. Let © = x,_1---2;---2o. If £ Z 0 mod 2¢, then there
is the least nonnegative integer k < ¢ such that z # ag. Note that

[f(a:)]l:{l@“’” L

Xy if I > k.
Hence f(x) =z — 1 mod 2". Suppose that 2 = 0 mod 2¢. If 2 = 0 mod
: 1 if 1 <i4 .
211 then [f(z)]; = o ! bs " and so f(x) =2+ 21 — 1 mod
€ ifl >4

2!, Suppose z = 2° mod 2T, Then we have two cases T,_2---Tg = a
and Tp_92-- 29 # a. If xyp_o---xy = a, then [f(z)]; = 1 ® x; for all |
and f(z) = x — 2" — 1 mod 2". If ¥, o---xg # a, then there is the
least nonnegative integer k > ¢ such that x; # ai. Hence x; = 0 # a;

1 if 1 <k .

and so [f(z)]; = o “0=" Hence f(z) =2z — 2% — 1 mod 2".
x; ifl >k

Therefore we have completely proved this theorem. ]

ExamMpLE 3.10. Let n =5 and ¢ = 1. Then
z—1mod 2° if z=1mod?2
f(z) =< x+3mod 2° ifz=0mod 22
z —5mod 2° if x =2 mod 22.
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Hence we have a sequence of period 2° as follows: 0, 3, 2, 29, 28, 31,
30, 25, 24, 27, 26, 21, 20, 23, 22, 17, 16, 19, 18, 13, 12, 15, 14, 9, 8, 12,
15, 14, 9, 8, 11, 10, 5,4, 7,6, 1, 0, - - -.

- THEOREM 3.11. Let f be a single cycle T-function generated by a =
21 4+ 9% where 0 < i <n —3. Then
x —1 mod 2" if z # 0 mod 2
flx) =<z —2a—1mod?2" ifxr=a mod2*?
x+ 271 — 1 mod 2" otherwise.

Proof. 1If i = 0, then by the case ¢ = 2 in Theorem 3.6

1 mod 2" if z # 3 mod 2?

flz) = T+ L mo 1 z # 3 mo 5, Which is a special case i = 0

x— 7 mod 2" if x =3 mod 2

in this theorem. Let = 2,1 ---2;---xo. If & # 0 mod 2, then by

Theorem 3.9 f(z) = x — 1 mod 2". Suppose that z = a mod 22, If

x # a mod 2"~ ! then there is the least positive integer I > i + 1 such
that z; = 1. Hence

o — zp®1 forall k<l
R Tk for all £ > 1.

Hence f(z) = * —2a — 1 mod 2". If x = a mod 2" !, then clearly
f(x) =x —2a — 1 mod 2". Now, it remains to show the case satisfying
both = a mod 2 and z # a mod 2/72. That is, there are two cases
X =Xp—1- - 2i4+2010---0 and * = xp_1 - - T;4210---0. We can easily
get f(r) =z + 21 — 1 mod 2". Therefore Theorem 3.11 holds. O

THEOREM 3.12. Let f be a single cycle T-function generated by a =
on—l _ 9t _ 1, where 0 < i <n —2. Then
x + 1 mod 2" if £ # —1 mod 2
f(x) =<z —2a—1mod?2" ifxr=2"—1mod2H!
x+2a+3 mod?2" ifx=—1mod2+!.

Proof. If i = 0, then by the case i = 1 in Theorem 3.3

3 d2" if x =0 mod 2
flz) = T 5 mo n ] o , which is a special case i =0
z — 1 mod 2™ otherwise
in this theorem. Let 2 = x,_1---2;---29. If £ # —1 mod 2%, then
there is the least nonnegative integer k < ¢ such that zp # ai. Note
1 ifl <k
that [f(x)]; = ® 1 —  Hence f(r) =z + 1 mod 2". Suppose
T if I > k.
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that x = —1 mod 20 Then we consider two cases © = 2 — 1 mod
21 and 2 = —1 mod 2. If  # a mod 2" !, then there is the least
nonnegative integer k > i such that xy # a. If Kk =4, then z; =1 # qa;

and so
. 1oz ifl<i
@)l = {:z:l if [ > 1.

Hence f(x) =z — 2" + 1 mod 2". If k > i, then 2, = 1 # a;, and so
CJlox i<k
F@l= {xl it 1> k.

Hence f(z) = = + 271 + 1 mod 2". If 2 = a mod 2", then [f(z)];
1 ® xy, then for all [. Hence f(x) = x + 27! 4+ 1 mod 2".

Rl

THEOREM 3.13. Let f be a single cycle T-function generated by a =
on—l _ 21+l _9i _ 1 where 0 <i <n —3. Then

r + 1 mod 2" if  # —1 mod 2
f(x) =<2 —2a+3 mod 2" ifxr=—1 mod 2!
x—2a—1mod?2" ifzx=2"—1mod 2,

Proof. If i = 0, then a = 2"~ — 22, Hence by the case i = 2 in The-

7 mod 2" if x = 0 mod 22
orem 3.3 f(z) = T . mod on lti i o , which is a special
z — 1 mo otherwise

case ¢ = 0 in this theorem. Let x = xp_1---x;---x9. If x Z a mod
27=1 then there is the least nonnegative integer k < n — 2 such that

xr # ag. In this case [f(x)]; = 1®a %fl Sk If kK <i—1, then
x] if I > k.
T = Xp_q1---x;101---1 and f(z) = zp_1---2;110---0. Hence f(z)
x4+ 1 mod 2". If k = i, then * = xp—1---x4111---1 and f(x)
Tp_1--2;41000---0. Hence f(z) = x — 2771 41 mod 2". If k =i + 1,
then x = xp,—1 - 2442101---1 and f(z) = xp—1 - 2442010 --0. Hence
flx)=z—2% +1mod 2". If k >i+1, then & = z,,_1 --- 2442001 - -- 1
and f(x) = yp—1--Yi+2110---0, where y; = 2; ® 1 for all [ < k and
y=x;=1foralll >k Hence f(zx) =z +224+2H y1=2-2a—1
mod 2". ]

REMARK 3.14. We get 3 sequences in Example 3.4, Example 3.7 and
Example 3.10. Even though finding functions that generate 3 sequences
is not hard, compared to the other 2 sequences, it could be difficult to
find a function that generates the sequence in Example 3.10. In general it
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is hard to find a function from a sequence by generated general functions

al?”’

, 1. It is important in stream ciphers to obtain a function that

generates a random number sequence generated by the given suitable
functions aq, -+ ,a,—1. It is one of the valuable topics which will be
studied in future.

(1]

2l
3]
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