ON SINGLE CYCLE T-FUNCTIONS GENERATED BY SOME ELEMENTS

Min Surp Rhee*

Abstract

Invertible transformations over n-bit words are essential ingredients in many cryptographic constructions. When n is large such invertible transformations are usually represented as a composition of simpler operations such as linear functions, S-P networks, Feistel structures and T-functions. Among them we study T-functions which are probably invertible transformations and are very useful in stream ciphers. In this paper we study the number of single cycle T-functions satisfying some conditions and characterize single cycle T -functions on $\left(\mathbb{Z}_{2}\right)^{n}$ generated by some elements in $\left(\mathbb{Z}_{2}\right)^{n-1}$.

1. Introduction

There are many researches about T-functions since Klimov and Shamir have first proposed a T-function to construct MDS maps in block ciphers[6] in order to resist differential attacks. They are also used in stream ciphers to overcome LFSR's shortcoming.

Let $\left(\mathbb{Z}_{2}\right)^{n}=\left\{\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \mid x_{i} \in \mathbb{Z}_{2}\right\}$ be the set of all n-tuples of elements in $\mathbb{Z}_{2}=\{0,1\}$, where n is a positive integer. An element of \mathbb{Z}_{2} is called a bit and an element of $\left(\mathbb{Z}_{2}\right)^{n}$ is called an n bit word. Let $[x]_{i-1}$ be the i-th bit from the left end of n-bit word x. Then $x=\left([x]_{0},[x]_{1}, \cdots,[x]_{n-1}\right)$. In particular, the first bit $[x]_{0}$ of x is called the least bit of x. It is often useful to express an element $\left([x]_{0},[x]_{1}, \cdots,[x]_{n-1}\right)$ of $\left(\mathbb{Z}_{2}\right)^{n}$ as an element $\sum_{i=0}^{n-1}[x]_{i} 2^{i}$ of $\mathbb{Z}_{2^{n}}$. In this expression every element of $\left(\mathbb{Z}_{2}\right)^{n}$ is considered as an element of $\mathbb{Z}_{2^{n}}$ and vice versa, where $\mathbb{Z}_{2^{n}}$ is the congruence ring modulo 2^{n}.

[^0]Consequently $\left(\mathbb{Z}_{2}\right)^{n}$ is considered as $\mathbb{Z}_{2^{n}}$ and vice versa. So an element of $\mathbb{Z}_{2^{n}}$ can be considered as an n-bit word. For example, an 8bit word $(1,1,0,1,0,0,1,0)$ of $\left(\mathbb{Z}_{2}\right)^{8}$ is considered as an element 75 of $\mathbb{Z}_{2^{8}}=\mathbb{Z}_{256}$ and an element 135 of $\mathbb{Z}_{2^{8}}$ is considered as an 8-bit word $(1,1,1,0,0,0,0,1)$ of $\left(\mathbb{Z}_{2}\right)^{8}$.

Definition 1.1. For any n-bit words $x=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$ and $y=\left(y_{0}, y_{1}, \cdots, y_{n-1}\right)$ of $\mathbb{Z}_{2^{n}}$ we define the following binary operations:
(1) $x \pm y$ and $x y$ are defined as $x \pm y \bmod 2^{n}$ and $x y \bmod 2^{n}$, respectively.
(2) $x \oplus y$ is defined as $\left(z_{0}, z_{1}, \cdots, z_{n-1}\right)$, where $z_{i}=0$ if $x_{i}=y_{i}$ and $z_{i}=1$ if $x_{i} \neq y_{i}$.

A function $f:\left(\mathbb{Z}_{2}\right)^{n} \rightarrow\left(\mathbb{Z}_{2}\right)^{n}$ is called a function f on $\left(\mathbb{Z}_{2}\right)^{n}$. A function f on $\left(\mathbb{Z}_{2}\right)^{n}$ is said to be a T-function(short for a triangular function) if for each $k \in\{1,2, \cdots, n\}$ the k-th bit $[f(x)]_{k-1}$ of an n-bit word $f(x)$ depends only on the first k bits $[x]_{0},[x]_{1}, \cdots,[x]_{k-1}$ of an n-bit word x.

A sequence $a_{0}, a_{1}, \cdots, a_{m}, \cdots$ of n-bit words in $\mathbb{Z}_{2^{n}}$ is said to be of period l if there is the least positive integer l such that $a_{i+l}=a_{i}$ for every nonnegative integer i. Now, for a given function f on $\mathbb{Z}_{2^{n}}$ and a nonnegative integer i, we define a function $f^{i}: \mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2^{n}}$ by

$$
f^{i}(x)= \begin{cases}x & \text { if } i=0 \\ f\left(f^{i-1}(x)\right) & \text { if } i \geq 1\end{cases}
$$

If f is a T-function on $\mathbb{Z}_{2^{n}}$, then so is f^{i} for every nonnegative integer i. Hence, if f is a bijective T -function on $\mathbb{Z}_{2^{n}}$, then so is f^{i} for every nonnegative integer i. An n-bit word a of $\mathbb{Z}_{2^{n}}$ is said to have a cycle of period l in a T-function f on $\mathbb{Z}_{2^{n}}$ if l is the least positive integer such that $f^{l}(a)=a$. If a has a cycle of period l in f, then a is said to generate a sequence $a=a_{0}, a_{1}, \cdots, a_{l-1}, \cdots$ of period l, where $a_{i}=f^{i}(a)$ for each nonnegative integer i. It is easy to show that every word $a_{i}(0 \leq i \leq l-1)$ has a cycle of period l if a_{0} has a cycle of period l. In particular, a word which has a cycle of period 1 is called a fixed word.
For example, let $f(x)=3 x+2$ on $\mathbb{Z}_{2^{3}}$. Then 3,7 are fixed words, 2 generates a sequence $2,0,2,0, \cdots$ and 1 generates a sequence $1,5,1$, $5, \cdots$.

A T-function f on $\mathbb{Z}_{2^{n}}$ is said to have a single cycle property if there is an n-bit word which has a cycle of period 2^{n}. A T-function f on $\mathbb{Z}_{2^{n}}$ with a single cycle property is called a single cycle T-function on $\mathbb{Z}_{2^{n}}$. From this definition if f is a single cycle T -function on $\mathbb{Z}_{2^{n}}$, then every
word of $\mathbb{Z}_{2^{n}}$ has a cycle of period 2^{n} and f is a bijective T-function on $\mathbb{Z}_{2^{n}}$.

Example 1.2. Let f be a function on $\mathbb{Z}_{2^{3}}$ defined by $f(x)=5 x+3$. Then $f(0)=3, f(3)=2, f(2)=5, f(5)=4, f(4)=7, f(7)=6, f(6)=1$ and $f(1)=0$. Hence 0 generates a sequence $0,3,2,5,4,7,6,1,0$, \cdots of period 8 . Hence f is a single cycle T-function on $\mathbb{Z}_{2^{3}}$. If we represent an element of $\mathbb{Z}_{2^{3}}$ as an element of $\left(\mathbb{Z}_{2}\right)^{3}$ in an above sequence, then $(0,0,0)$ generates a sequence $(0,0,0),(0,1,1),(0,1,0),(1,0,1),(1,0,0)$, $(1,1,1),(1,1,0),(1,0,0),(0,0,0), \cdots$ of period 8 , which may be considered as a binary sequence of period 3×2^{3} :

$$
000011010101100111110001000 \ldots
$$

2. The number of T-functions

As we know, a boolean function on $\left(\mathbb{Z}_{2}\right)^{n}$ is a function from $\left(\mathbb{Z}_{2}\right)^{n}$ to \mathbb{Z}_{2}. We can also represent a function on $\left(\mathbb{Z}_{2}\right)^{n}$ as n boolean functions on $\left(\mathbb{Z}_{2}\right)^{n}$. Let f be a function on $\left(\mathbb{Z}_{2}\right)^{n}$ defined by $f(x)=y$, where $x, y \in$ $\left(\mathbb{Z}_{2}\right)^{n}$. If $x=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$ and $y=\left(y_{0}, y_{1}, \cdots, y_{n-1}\right)$, then $y_{i}=$ $[y]_{i}=[f(x)]_{i}=\left[f\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right]_{i}$ for all integers $i=0,1, \cdots,(n-1)$. We usually denote by $x_{i}=[x]_{i}, y_{i}=[y]_{i}=[f(x)]_{i}=f_{i}(x)$ and $f=$ $\left(f_{0}, f_{1}, \cdots, f_{n-1}\right)$, where f_{i} is a boolean function on $\left(\mathbb{Z}_{2}\right)^{i+1}$. If f is a T-function on $\left(\mathbb{Z}_{2}\right)^{n}$, then $[f(x)]_{i}=f_{i}\left([x]_{0},[x]_{1}, \cdots,[x]_{i}\right)$ for every nonnegative integer i.

Let $\alpha_{0}(x)=1$ be the constant function, and let α_{i} define a boolean function on $\left(\mathbb{Z}_{2}\right)^{i}$ for each positive integer i. For any real number a. we define an integer $[a]$ by the greatest integer which is not greater than a.

The following two results are well known in [4].
Proposition 2.1. A function f on $\left(\mathbb{Z}_{2}\right)^{n}$ is a single cycle T-function if and only if for every nonegative integer $i<n$ the $(i+1)$-th bit of the output $f(x)$ can be represented as

$$
[f(x)]_{i}=[x]_{i} \oplus \alpha_{i}\left([x]_{0},[x]_{1}, \cdots,[x]_{i-1}\right)
$$

for some boolean function α_{i} on $\left(\mathbb{Z}_{2}\right)^{i}$ satisfying $\alpha_{0}(x)=1$ and $\bigoplus_{x=0}^{2^{i}-1} \alpha_{i}(x)=1$.

Proposition 2.2. A polynomial $f(x)$ is a single cycle T-function on $\left(\mathbb{Z}_{2}\right)^{n}$ for any positive integer n if and only if it is a single cycle T-function on $\left(\mathbb{Z}_{2}\right)^{3}$.

Proposition 2.3. The number of all single cycle T-functions on $\left(\mathbb{Z}_{2}\right)^{n}$ is $2^{2^{n}-n-1}$.

Proof. By Proposition 2.1 for each single cycle T-function f on $\left(\mathbb{Z}_{2}\right)^{n}$ there are boolean functions $\alpha_{0}, \cdots, \alpha_{n-1}$ such that $\alpha_{0}(x)=1$ and $\bigoplus_{x=0}^{2^{i}-1} \alpha_{i}(x)=1$ for all $i=1,2, \cdots, n-1$. Note that $\alpha_{0}(x)=1$ and $\alpha_{i}(x)$ is an algebraic normal form of $[x]_{0},[x]_{1}, \cdots,[x]_{i-1}$, which is $\alpha_{i}(x)=c \oplus c_{0}[x]_{0} \oplus c_{1}[x]_{1} \oplus \cdots \oplus c_{i-1}[x]_{i-1} \oplus c_{0,1}[x]_{0}[x]_{1} \oplus \cdots \oplus$ $c_{0,1, \cdots,(i-1)}[x]_{0}[x]_{1} \cdots[x]_{i-1}$ for each $i \geq 1$. So there are 2^{i} coefficients in $\alpha_{i}(x)$. Since $\bigoplus_{x=0}^{2^{i}-1} \alpha_{i}(x)=c_{0,1, \cdots,(i-1)}=1$, all coefficients except $c_{0,1, \cdots,(i-1)}$ are arbitrary. Hence the number of all boolean functions α_{i} on $\left(\mathbb{Z}_{2}\right)^{i}$ satisfying $\bigoplus_{x=0}^{2^{i}-1} \alpha_{i}(x)=1$ is $2^{2^{i}-1}$. Let T_{n} be the number of all single cycle T-functions on $\left(\mathbb{Z}_{2}\right)^{n}$. Note that T_{n} depends on the number of the functions α_{i} for all $i=0,1, \cdots, n-1$. Since $\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}\right\}$ is independent for each i we get

$$
\begin{aligned}
T_{n} & =\prod_{i=1}^{n-1} \text { the number of } \alpha_{i} \\
& =\prod_{i=1}^{n-1} 2^{2^{i}-1}=2^{2^{1}+2^{2}+\cdots+2^{n-1}-(n-1)}=2^{2^{n}-n-1} .
\end{aligned}
$$

Proposition 2.4. Let f be a function on $\mathbb{Z}_{2^{n}}$ defined by $f(x)=$ $a x+b$. Then f is a single cycle T-function if and only if $a \equiv 1 \mathrm{mod}$ 4 and $b \equiv 1 \bmod 2$. Consequently, the number of single cycle affine T-functions on $\mathbb{Z}_{2^{n}}$ is $2^{2 n-3}$, where $n \geq 2$.

Proof. By Proposition $2.2 f(x)=a x+b$ is a single cycle T-function on $\mathbb{Z}_{2^{n}}$ if and only if it is a single cycle T-function on $\mathbb{Z}_{2^{3}}$. If f is a single cycle T-function on $\mathbb{Z}_{2^{3}}$, then by Proposition $2.1[f(x)]_{i}=[x]_{i} \oplus \alpha_{i}(x)$ with $\bigoplus_{x=0}^{2^{i}-1} \alpha_{i}(x)=1$ for all $i=0,1,2$. If $i=0$, then $[f(x)]_{0}=[a x+$ $b]_{0}=[a]_{0}[x]_{0} \oplus[b]_{0}$. Hence both a and b are odd. If $i=1$, then $\alpha_{1}(x)=[a]_{1}[x]_{0} \oplus[b]_{1} \oplus\left[\frac{f_{0}(x)}{2}\right]$, where $f_{0}\left(x_{0}\right)=[x]_{0} \oplus 1$. Note that $\oplus_{x=0}^{2^{1}-1} \alpha_{1}(x)=[a]_{1} \oplus 1$. Hence $[a]_{1}=0$ and $[b]_{1}$ is arbitrary. If $i=2$, then $\alpha_{2}(x)=[a]_{2}[x]_{0} \oplus[b]_{2} \oplus\left[\frac{f_{1}(x)}{2}\right]$, where $f_{1}(x)=[x]_{1} \oplus[b]_{1} \oplus\left[\frac{f_{0}(x)}{2}\right]$. Note that $\bigoplus_{x=0}^{2^{2}-1} \alpha_{2}(x)=1$. Hence $[a]_{2},[b]_{1}$, and $[b]_{2}$ are arbitrary. Hence $a \equiv 1 \bmod 4$ and $b \equiv 1 \bmod 2$. Conversely, if $a \equiv 1 \bmod 4$ and $b \equiv 1 \bmod 2$, then it is clear that f is a single cycle T -function on $\mathbb{Z}_{2^{3}}$. Hence f is a single cycle T-function on $\mathbb{Z}_{2^{n}}$. Now, assume $a x+b \equiv a^{\prime} x+b^{\prime}$
$\bmod 2^{n}$ for every element x in $\mathbb{Z}_{2^{n}}$. By substituting $x=0$ we get $b=b^{\prime}$ in $\mathbb{Z}_{2^{n}}$. Hence $a=a^{\prime}$ in $\mathbb{Z}_{2^{n}}$. Therefore, the number of single cycle affine T-functions on $\mathbb{Z}_{2^{n}}$ is $2^{n-2} 2^{n-1}=2^{2 n-3}$, where $n \geq 2$.

Proposition 2.5. Let f be a function on $\mathbb{Z}_{2^{n}}$ defined by $f(x)=$ $a x^{2}+b x+c$. Then f is a single cycle T-function if and only if a, b and c in $\mathbb{Z}_{2^{n}}$ satisfy one of the following:
(i) $a \equiv 0 \bmod 4, b \equiv 1 \bmod 4$ and $c \equiv 1 \bmod 2$.
(ii) $a \equiv 2 \bmod 4, b \equiv 3 \bmod 4$ and $c \equiv 1 \bmod 2$.

Proof. By Proposition $2.2 f$ is a single cycle T-function on $\mathbb{Z}_{2^{n}}$ if and only if it is a single cycle T -function on $\mathbb{Z}_{2^{3}}$. If f is a single cycle T-function on $\mathbb{Z}_{2^{3}}$, then by Proposition $2.1[f(x)]_{i}=f_{i}\left([x]_{0}, \cdots,[x]_{i}\right)=$ $[x]_{i} \oplus \alpha_{i}(x)$ with $\bigoplus_{x=0}^{2^{i}-1} \alpha_{i}(x)=1$ for all $i=0,1,2$. If $\mathrm{i}=0$, then $[f(x)]_{0}=$ $\left[a x^{2}+b x+c\right]_{0}=\left([a]_{0} \oplus[b]_{0}\right)[x]_{0} \oplus[c]_{0}$. Hence both $a+b$ and c are odd. If $i=1$, then $[f(x)]_{1}=\left[a x^{2}+b x+c\right]_{1}=[b]_{0}[x]_{1} \oplus \alpha_{1}(x)$. So $[b]_{0}=1$ and so $[a]_{0}=0$. Note that $\alpha_{1}(x)=\left([a]_{1} \oplus[b]_{1}\right)[x]_{0} \oplus[c]_{1} \oplus\left[\frac{f_{0}(x)}{2}\right]$ where $f_{0}(x)=[x]_{0} \oplus 1$. Since $\bigoplus_{x=0}^{2^{1}-1} \alpha_{1}(x)=[a]_{1} \oplus[b]_{1} \oplus 1=1$. Hence $[a]_{1} \oplus[b]_{1}$ is even and $[c]_{1}$ is arbitrary. If $i=2$, then $[f(x)]_{2}=\left[a x^{2}+b x+c\right]_{2}=$ $[x]_{2} \oplus \alpha_{2}(x)$, where $\alpha_{2}(x)=\left([a]_{2} \oplus[b]_{2}\right)[x]_{0} \oplus[b]_{1}[x]_{1} \oplus[c]_{2} \oplus\left[\frac{[f(x)]_{1}}{2}\right]$. Note that $\bigoplus_{x=0}^{2^{2}-1} \alpha_{2}(x)=1$ for any arbitrary $[a]_{1},[a]_{2},[b]_{1},[b]_{2},[c]_{2}$ and $[c]_{2}$. Hence we have the following two cases:
(i) $a \equiv 0 \bmod 4, b \equiv 1 \bmod 4$ and $c \equiv 1 \bmod 2$.
(ii) $a \equiv 2 \bmod 4, b \equiv 3 \bmod 4$ and $c \equiv 1 \bmod 2$.

Conversely, suppose that above two cases hold. Then it is clear that f is a single cycle T -function on $\mathbb{Z}_{2^{3}}$. Hence f is a single cycle T-function on $\mathbb{Z}_{2^{n}}$.

Proposition 2.6. Let $f(x)=a x^{2}+b x+c$ be a T-function on $\mathbb{Z}_{2^{n}}$, where $n \geq 3$. Then $f(x)$ is a single cycle T-function if and only if there are elements $a \in \mathbb{Z}_{2^{n-1}}$ and $b, c \in \mathbb{Z}_{2^{n}}$ which satisfy one of the following:
(i) $a \equiv 0 \bmod 4, b \equiv 1 \bmod 4$ and $c \equiv 1 \bmod 2$.
(ii) $a \equiv 2 \bmod 4, b \equiv 3 \bmod 4$ and $c \equiv 1 \bmod 2$.

Proof. Suppose that (i) and (ii) are satisfied. Then by Proposition $2.5 f(x)$ is a single cycle T-function. Conversely, let $f(x)=a x^{2}+b x+c$ be a single cycle T-function on $\mathbb{Z}_{2^{n}}$. Then by Proposition $2.5 a, b$ and c in $\mathbb{Z}_{2^{n}}$ satisfy one of the following:
(i) $a \equiv 0 \bmod 4, b \equiv 1 \bmod 4$ and $c \equiv 1 \bmod 2$.
(ii) $a \equiv 2 \bmod 4, b \equiv 3 \bmod 4$ and $c \equiv 1 \bmod 2$.

Since $2^{n-1} x(x-1) \equiv 0 \bmod 2^{n}$ for every element x in $\mathbb{Z}_{2^{n}}$ we get

$$
\left(a+2^{n-1}\right) x^{2}+b x+c \equiv a x^{2}+\left(b+2^{n-1}\right) x+c \bmod 2^{n}
$$

for every element a in $\mathbb{Z}_{2^{n}}$. Hence every single cycle T-function with $a \geq 2^{n-1}$ can be replaced by $a-2^{n-1}$. Hence every element can be assumed less than 2^{n-1}. So two conditions in Proposition 2.5 can be replaced by two conditions in Proposition 2.6.

In the process of the proof of Proposition 2.6 every single cycle Tfunction of the form $b x+c \bmod 2^{n}$ can be replaced by a single cycle T-function of the form $2^{n-1} x^{2}+\left(b+2^{n-1}\right) x+c \bmod 2^{n}$. Hence every single cycle T-function of degree 1 can be replaced by a single cycle T-function of degree 2 .

Proposition 2.7. Suppose that $a x^{2}+b x+c \equiv a^{\prime} x^{2}+b^{\prime} x+c^{\prime} \bmod$ 2^{n} for every element $x \in \mathbb{Z}_{2^{n}}$, where $a, a^{\prime} \in \mathbb{Z}_{2^{n-1}}$ and $b, c, b^{\prime}, c^{\prime} \in \mathbb{Z}_{2^{n}}$ satisfy one of the following:
(i) $a \equiv 0 \bmod 4, b \equiv 1 \bmod 4$ and $c \equiv 1 \bmod 2$.
(ii) $a \equiv 2 \bmod 4, b \equiv 3 \bmod 4$ and $c \equiv 1 \bmod 2$.

Then $a \equiv a^{\prime} \bmod 2^{n-1}, b \equiv b^{\prime} \bmod 2^{n}$ and $c \equiv c^{\prime} \bmod 2^{n}$. Consequently, the number of single cycle T-functions on $\mathbb{Z}_{2^{n}}$ of degree $n \leq 2$ is $2^{3 n-5}$, where $n \geq 3$.

Proof. Suppose that $\left(a-a^{\prime}\right) x^{2}+\left(b-b^{\prime}\right) x+\left(c-c^{\prime}\right) \equiv 0 \bmod 2^{n}$ for every element $x \in \mathbb{Z}_{2^{n}}$. By substituting $x=0$, we get $c \equiv c^{\prime} \bmod 2^{n}$. Hence $\left(a-a^{\prime}\right) x^{2}+\left(b-b^{\prime}\right) x \equiv 0 \bmod 2^{n}$ for every element $x \in \mathbb{Z}_{2^{n}}$. Without loss of generality we may assume $a \geq a^{\prime}$. So $0 \leq a-a^{\prime}<2^{n-1}$. By substituting $x=1$ and $x=-1$, we get

$$
\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right) \equiv 0 \bmod 2^{n} \text { and }\left(a-a^{\prime}\right)-\left(b-b^{\prime}\right) \equiv 0 \bmod 2^{n} .
$$

Hence $2\left(a-a^{\prime}\right) \equiv 0 \bmod 2^{n}$ and so $a-a^{\prime} \equiv 0 \bmod 2^{n-1}$. Consequently, $b \equiv b^{\prime} \bmod 2^{n}$. Therefore, the number of single cycle T-functions of degree ≤ 2 is $2 \cdot 2^{n-3} 2^{n-2} 2^{n-1}=2^{3 n-5}$.

Example 2.8. By Proposition 2.3 and Proposition 2.4 every single cycle T-function on $\mathbb{Z}_{2^{2}}$ is a single cycle T-function of degree 1 . Similarly by Proposition 2.3 and Proposition 2.7 every single cycle T-function on $\mathbb{Z}_{2^{3}}$ may be expressed as a single cycle T-function of degree 2 .

3. Single cycle T-functions generated by some elements

In Proposition 2.1 we explain that a function f on $\left(\mathbb{Z}_{2}\right)^{n}$ is a single cycle T-function if and only if for every nonegative integer $i<n$ the $(i+1)$-th bit of the output $f(x)$ can be represented as

$$
[f(x)]_{i}=[x]_{i} \oplus \alpha_{i} \text { for some boolean function } \alpha_{i} \text { on }\left(\mathbb{Z}_{2}\right)^{i}
$$

satisfying $\alpha_{0}(x)=1$ and $\bigoplus_{x=0}^{2^{i}-1} \alpha_{i}(x)=1$. In this case we say that a function f is a single cycle T-function on $\mathbb{Z}_{2^{n}}$ determined by $\alpha_{0}, \alpha_{1}, \cdots$, α_{n-1}, where
$\alpha_{0}(x)=1$ and α_{i} is a boolean function on $\left(\mathbb{Z}_{2}\right)^{i}$
with $\bigoplus_{x=0}^{2^{i}-1} \alpha_{i}(x)=1$ for every positive integer $i \leq n-1 \cdots \cdots(*)$.
In this section we characterize single cycle T-functions determined by some special types of $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}$ satisfying (*).

Let $x=a_{n-2} a_{n-3} \cdots a_{1} a_{0}$ be an element of $\mathbb{Z}_{2^{n-1}}$, and consider n boolean functions $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}$ which are defined as follows:
$\alpha_{0}(x)=1$, and
$\alpha_{i}(x)=\left\{\begin{array}{ll}1 & \text { if } x=a_{i-1} a_{i-2} \cdots a_{0} \\ 0 & \text { if otherwise }\end{array}\right.$ for all $i=1,2, \cdots, n-1 . \cdots \cdots(* *)$
Then $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}$ satisfy ($*$). We say that $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}$ satisfying (**) are functions determined by $a_{n-2} a_{n-3} \cdots a_{1} a_{0}$. For example, n functions $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}$ determined by $0 \cdots 0101$ are boolean functions as follows:

$$
\begin{aligned}
& \alpha_{0}(x)=1, \alpha_{1}(x)=\alpha_{2}(x)=\left\{\begin{array}{ll}
1 & \text { if } x=1 \\
0 & \text { otherwise }
\end{array}\right. \text { and } \\
& \alpha_{i}(x)=\left\{\begin{array}{ll}
1 & \text { if } x=5 \\
0 & \text { otherwise }
\end{array} \text { for all } i \geq 3\right.
\end{aligned}
$$

A single cycle T-function determined by functions $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n-1}$ satisfying (**) is shortly called a single cycle T-function determined by $a_{n-2} a_{n-3} \cdots a_{1} a_{0}$.

Example 3.1. Let's consider a single cycle T-function generated by $0=00 \cdots 0$. Then $\alpha_{0}(x)=1$ and $\alpha_{i}(x)=\left\{\begin{array}{ll}1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{array}\right.$ for all $i \geq 1$. If x is odd, then $\alpha_{i}(x)=0$ for all $i \geq 1$. Hence $[f(x)]_{0}=[x]_{0} \oplus \alpha_{0}(x)=$ $[x]_{0} \oplus 1=0$ and $[f(x)]_{i}=[x]_{i} \oplus \alpha_{i}(x)=[x]_{i}$ for all $i \geq 1$. Hence $f(x) \equiv x-1 \bmod 2^{n}$. Clearly $f(0) \equiv 2^{n}-1 \equiv x-1 \bmod 2^{n}$. If x is
nonzero even, then $x=x_{n-1} \cdots x_{k+1} 10 \cdots 0$ and

$$
[f(x)]_{i}=[x]_{i} \oplus \alpha_{i}(x)=[x]_{i} \oplus \begin{cases}1 & \text { if } i \leq k \\ 0 & \text { if } i>k .\end{cases}
$$

Hence $f(x)=x_{n-1} \cdots x_{k+1} 01 \cdots 1$ and $f(x) \equiv x-1 \bmod 2^{n}$. Therefore, $f(x) \equiv x-1 \bmod 2^{n}$.

Example 3.2. Let's consider a single cycle T-function generated by $2^{n-1}-1=11 \cdots 1$. Then $\alpha_{0}(x)=1$ and $\alpha_{i}(x)=\left\{\begin{array}{ll}1 & \text { if } x=2^{i}-1 \\ 0 & \text { otherwise }\end{array}\right.$ for all $i \geq 1$. If x is even, then $\alpha_{0}(x)=1$ and $\alpha_{i}(x)=0$ for all $i \geq 1$. Hence $f(x) \equiv x+1 \bmod 2^{n}$. Clearly, $f\left(2^{n}-1\right)=0$. If x is odd, then $x=x_{n-1} \cdots x_{k+1} 01 \cdots 1$ and

$$
[f(x)]_{i}=[x]_{i} \oplus \alpha_{i}(x)=[x]_{i} \oplus \begin{cases}1 & \text { if } i \leq k \\ 0 & \text { if } i>k .\end{cases}
$$

Hence $f(x)=x_{n-1} \cdots x_{k+1} 10 \cdots 0$ and $f(x) \equiv x+1 \bmod 2^{n}$. Therefore, $f(x) \equiv x+1 \bmod 2^{n}$.

Now, we characterize the single cycle T-function on $\mathbb{Z}_{2^{n}}$ determined by an element $a_{n-2} a_{n-3} \cdots a_{1} a_{0}$ in $\mathbb{Z}_{2^{n-1}}$.

Theorem 3.3. Let f be a single cycle T-function generated by $a=$ $2^{n-1}-2^{i}$, where $1 \leq i \leq n-1$. Then

$$
f(x) \equiv\left\{\begin{array}{ll}
x-2 a-1 \bmod 2^{n} & \text { if } x \equiv 0 \bmod 2^{i} \\
x-1 \bmod 2^{n} & \text { otherwise }
\end{array} .\right.
$$

Proof. If $a=2^{n-1}-2^{i}$, then $a_{n-2}=\cdots=a_{i}=1$ and $a_{i-1}=$ $\cdots=a_{0}=0$. Note that a single cycle T-function generated by a has n functions α_{i} as follows: $\alpha_{0}(x)=1, \alpha_{k}(x)=\left\{\begin{array}{ll}1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{array}\right.$ for all k with $1 \leq k \leq i$ and $\alpha_{k}(x)=\left\{\begin{array}{ll}1 & \text { if } x=2^{k}-2^{i} \\ 0 & \text { otherwise }\end{array}\right.$ for all $k>i$. Let $x=$ $x_{n-1} \cdots x_{1} x_{0}$ and l be the least nonnegative integer such that $x_{l} \neq a_{l}$. If $l<i$, then $x_{l}=1$ and $x_{t}=0$ for all $t<l$. Hence

$$
y_{t}= \begin{cases}x_{t} \oplus 1 & \text { if } t \leq l \\ x_{t} & \text { if } t>l\end{cases}
$$

and $f(x) \equiv x-1 \bmod 2^{n}$. If $l \geq i$, then $x_{l}=0$ and $x_{t}=a_{t}$ for all $t<l$.
Hence $y_{t}=\left\{\begin{array}{ll}x_{t} \oplus 1 & \text { if } t \leq l \\ x_{t} & \text { if } t>l\end{array}\right.$ and $f(x) \equiv x+2^{i}+\cdots 2+1 \equiv x+2^{i+1}-1$ $\bmod 2^{n}$. If there is no l such that $x_{l} \neq a_{l}$, then $y_{t}=x_{t} \oplus 1$ for all t. Hence $f(x) \equiv x+2^{i}+\cdots 2+1 \equiv x+2^{i+1}-1 \bmod 2^{n}$. Note that $x \equiv 0$ $\bmod 2^{i}$ if and only if $l \geq i$ or there is no l such that $x_{l} \neq a_{l}$. Since $2^{i+1} \equiv-2 a \bmod 2^{n}$, Theorem 3.3 holds.

Example 3.4. Let $n=5$ and $i=3$. Then

$$
f(x)= \begin{cases}x+2^{4}-1 \bmod 2^{5} & \text { if } x \equiv 0 \bmod 2^{3} \\ x-1 \bmod 2^{5} & \text { otherwise }\end{cases}
$$

Hence we have a sequence of period 2^{5} as follows: $0,15,14,13,12$, $11,10,9,8,23,22,20,19,18,17,16,31,30,29,28,27,26,25,24,7,6$, $5,4,3,2,1,0, \cdots$

Remark 3.5. Example 3.1 is the special case $i=n-1$ in Theorem 3.3. If $i=0$, then $x \equiv \bmod 2^{0}$ for every integer x. Hence $f(x) \equiv x+1$ $\bmod 2^{n}$, which is shown in Example 3.2.

Theorem 3.6. Let f be a single cycle T-function generated by $a=$ $2^{i}-1$, where $0<i \leq n-1$. Then

$$
f(x)= \begin{cases}x+1 \bmod 2^{n} & \text { if } x \not \equiv-1 \bmod 2^{i} \\ x-2 a-1 \bmod 2^{n} & \text { if } x \equiv-1 \bmod 2^{i}\end{cases}
$$

Proof. Let $x=x_{n-1} \cdots x_{1} x_{0}$ and let k be the least nonnegative integer such that $x_{k} \neq a_{k}$. If $x \not \equiv-1 \bmod 2^{i}$, then $k<i$ and

$$
[f(x)]_{l}= \begin{cases}x_{l} \oplus 1 & \text { if } l \leq k \\ x_{l} & \text { if } l \geq k+1\end{cases}
$$

Note that $f\left(\cdots x_{k+1} 01 \cdots 1\right)=\cdots x_{k+1} 10 \cdots 0$. Hence $f(x) \equiv x+1 \bmod$ 2^{n}. Assume that $x \equiv-1 \bmod 2^{i}$. Then $k \geq i$ or there is no k such that $x_{k} \neq a_{k}$. If $k \geq i$, then $[f(x)]_{l}=\left\{\begin{array}{ll}x_{l} \oplus 1 & \text { if } l \leq k \\ x_{l} & \text { if } l \geq k+1 .\end{array}\right.$. Note that $f\left(\cdots x_{k+1} 11 \cdots 1\right)=\cdots x_{k+1} 00 \cdots 0$ if $k=i$ and $f\left(\cdots x_{k+1} 10 \cdots 01 \cdots 1\right)=$ $\cdots x_{k+1} 01 \cdots 10 \cdots 0$ if $k>i$. Hence $f(x) \equiv x-2^{i+1}+1 \bmod 2^{n}$. Also, if there is no k such that $x_{k} \neq a_{k}$, then $y_{t}=x_{t} \oplus 1$ for all t. Hence $f(x) \equiv x+2^{n-1}+\cdots 2^{i+1}+1 \equiv x-2^{i+1}+1 \bmod 2^{n}$. Since $2^{i+1} \equiv 2 a+2$ $\bmod 2^{n}$, Theorem 3.6 holds.

Example 3.7. Let $n=5$ and $i=1$. Then

$$
f(x)= \begin{cases}x+1 \bmod 2^{5} & \text { if } x \equiv 0 \bmod 2 \\ x-3 \bmod 2^{5} & \text { if } x \equiv 1 \bmod 2 .\end{cases}
$$

Hence we have a sequence of period 2^{5} as follows: $0,1,30,31,28,29$, $26,27,24,25,22,23,20,21,18,19,16,17,14,15,12,13,10,11,8,9$, $6,7,4,5,2,3,0, \cdots$.

Remark 3.8. Example 3.2 is the special case $i=n-1$ in Theorem 3.6. Also, Example 3.1 is the special case $i=0$ in Theorem 3.6.

Theorem 3.9. Let f be a single cycle T-function generated by $a=2^{i}$, where $0 \leq i \leq n-2$. Then

$$
f(x) \equiv \begin{cases}x-1 \bmod 2^{n} & \text { if } x \not \equiv 0 \bmod 2^{i} \\ x+2 a-1 \bmod 2^{n} & \text { if } x \equiv 0 \bmod 2^{i+1} \\ x-2 a-1 \bmod 2^{n} & \text { if } x \equiv 2^{i} \bmod 2^{i+1} .\end{cases}
$$

Proof. If $i=0$, then by the case $i=1$ in Theorem 3.6,

$$
f(x) \equiv\left\{\begin{array}{ll}
x+1 \bmod 2^{n} & \text { if } x \equiv 0 \bmod 2 \\
x-3 \bmod 2^{n} & \text { if } x \equiv 1 \bmod 2
\end{array}, \text { which is a special case } i=0\right.
$$ in this theorem. Let $x=x_{n-1} \cdots x_{i} \cdots x_{0}$. If $x \not \equiv 0 \bmod 2^{i}$, then there is the least nonnegative integer $k<i$ such that $x_{k} \neq a_{k}$. Note that

$$
[f(x)]_{l}= \begin{cases}1 \oplus x_{l} & \text { if } l \leq k \\ x_{l} & \text { if } l>k\end{cases}
$$

Hence $f(x) \equiv x-1 \bmod 2^{n}$. Suppose that $x \equiv 0 \bmod 2^{i}$. If $x \equiv 0 \bmod$ 2^{i+1}, then $[f(x)]_{l}=\left\{\begin{array}{ll}1 \oplus x_{l} & \text { if } l \leq i \\ x_{l} & \text { if } l>i\end{array}\right.$ and so $f(x) \equiv x+2^{i+1}-1 \bmod$ 2^{i}. Suppose $x \equiv 2^{i} \bmod 2^{i+1}$. Then we have two cases $x_{n-2} \cdots x_{0}=a$ and $x_{n-2} \cdots x_{0} \neq a$. If $x_{n-2} \cdots x_{0}=a$, then $[f(x)]_{l}=1 \oplus x_{l}$ for all l and $f(x) \equiv x-2^{i+1}-1 \bmod 2^{n}$. If $x_{n-2} \cdots x_{0} \neq a$, then there is the least nonnegative integer $k>i$ such that $x_{k} \neq a_{k}$. Hence $x_{i}=0 \neq a_{i}$ and so $[f(x)]_{l}=\left\{\begin{array}{ll}1 \oplus x_{l} & \text { if } l \leq k \\ x_{l} & \text { if } l>k\end{array}\right.$. Hence $f(x) \equiv x-2^{i+1}-1 \bmod 2^{n}$. Therefore we have completely proved this theorem.

Example 3.10. Let $n=5$ and $i=1$. Then

$$
f(x) \equiv \begin{cases}x-1 \bmod 2^{5} & \text { if } x \equiv 1 \bmod 2 \\ x+3 \bmod 2^{5} & \text { if } x \equiv 0 \bmod 2^{2} \\ x-5 \bmod 2^{5} & \text { if } x \equiv 2 \bmod 2^{2} .\end{cases}
$$

Hence we have a sequence of period 2^{5} as follows: $0,3,2,29,28,31$, $30,25,24,27,26,21,20,23,22,17,16,19,18,13,12,15,14,9,8,12$, $15,14,9,8,11,10,5,4,7,6,1,0, \cdots$.

Theorem 3.11. Let f be a single cycle T-function generated by $a=$ $2^{i+1}+2^{i}$, where $0 \leq i \leq n-3$. Then

$$
f(x) \equiv \begin{cases}x-1 \bmod 2^{n} & \text { if } x \not \equiv 0 \bmod 2^{i} \\ x-2 a-1 \bmod 2^{n} & \text { if } x \equiv a \bmod 2^{i+2} \\ x+2^{i+1}-1 \bmod 2^{n} & \text { otherwise }\end{cases}
$$

Proof. If $i=0$, then by the case $i=2$ in Theorem 3.6
$f(x) \equiv\left\{\begin{array}{ll}x+1 \bmod 2^{n} & \text { if } x \not \equiv 3 \bmod 2^{2} \\ x-7 \bmod 2^{n} & \text { if } x \equiv 3 \bmod 2^{2}\end{array}\right.$, which is a special case $i=0$ in this theorem. Let $x=x_{n-1} \cdots x_{i} \cdots x_{0}$. If $x \not \equiv 0 \bmod 2^{i}$, then by Theorem $3.9 f(x) \equiv x-1 \bmod 2^{n}$. Suppose that $x \equiv a \bmod 2^{i+2}$. If $x \not \equiv a \bmod 2^{n-1}$ then there is the least positive integer $l>i+1$ such that $x_{l}=1$. Hence

$$
x_{k}= \begin{cases}x_{k} \oplus 1 & \text { for all } k \leq l \\ x_{k} & \text { for all } k>l\end{cases}
$$

Hence $f(x) \equiv x-2 a-1 \bmod 2^{n}$. If $x \equiv a \bmod 2^{n-1}$, then clearly $f(x) \equiv x-2 a-1 \bmod 2^{n}$. Now, it remains to show the case satisfying both $x \equiv a \bmod 2^{i}$ and $x \not \equiv a \bmod 2^{i+2}$. That is, there are two cases $: x=x_{n-1} \cdots x_{i+2} 010 \cdots 0$ and $x=x_{n-1} \cdots x_{i+2} 10 \cdots 0$. We can easily get $f(x) \equiv x+2^{i+1}-1 \bmod 2^{n}$. Therefore Theorem 3.11 holds.

Theorem 3.12. Let f be a single cycle T-function generated by $a=$ $2^{n-1}-2^{i}-1$, where $0 \leq i \leq n-2$. Then

$$
f(x) \equiv \begin{cases}x+1 \bmod 2^{n} & \text { if } x \not \equiv-1 \bmod 2^{i} \\ x-2 a-1 \bmod 2^{n} & \text { if } x \equiv 2^{i}-1 \bmod 2^{i+1} \\ x+2 a+3 \bmod 2^{n} & \text { if } x \equiv-1 \bmod 2^{i+1}\end{cases}
$$

Proof. If $i=0$, then by the case $i=1$ in Theorem 3.3
$f(x) \equiv\left\{\begin{array}{ll}x+3 \bmod 2^{n} & \text { if } x \equiv 0 \bmod 2 \\ x-1 \bmod 2^{n} & \text { otherwise }\end{array}\right.$, which is a special case $i=0$ in this theorem. Let $x=x_{n-1} \cdots x_{i} \cdots x_{0}$. If $x \not \equiv-1 \bmod 2^{i}$, then there is the least nonnegative integer $k<i$ such that $x_{k} \neq a_{k}$. Note that $[f(x)]_{l}=\left\{\begin{array}{ll}1 \oplus x_{l} & \text { if } l \leq k \\ x_{l} & \text { if } l>k .\end{array}\right.$ Hence $f(x) \equiv x+1 \bmod 2^{n}$. Suppose
that $x \equiv-1 \bmod 2^{i}$. Then we consider two cases $x \equiv 2^{i}-1 \bmod$ 2^{i+1} and $x \equiv-1 \bmod 2^{i+1}$. If $x \not \equiv a \bmod 2^{n-1}$, then there is the least nonnegative integer $k \geq i$ such that $x_{k} \neq a_{k}$. If $k=i$, then $x_{i}=1 \neq a_{i}$ and so

$$
[f(x)]_{l}= \begin{cases}1 \oplus x_{l} & \text { if } l \leq i \\ x_{l} & \text { if } l>i\end{cases}
$$

Hence $f(x) \equiv x-2^{i+1}+1 \bmod 2^{n}$. If $k>i$, then $x_{k}=1 \neq a_{k}$ and so

$$
[f(x)]_{l}= \begin{cases}1 \oplus x_{l} & \text { if } l \leq k \\ x_{l} & \text { if } l>k\end{cases}
$$

Hence $f(x) \equiv x+2^{i+1}+1 \bmod 2^{n}$. If $x \equiv a \bmod 2^{n-1}$, then $[f(x)]_{l} \equiv$ $1 \oplus x_{l}$, then for all l. Hence $f(x) \equiv x+2^{i+1}+1 \bmod 2^{n}$.

Theorem 3.13. Let f be a single cycle T-function generated by $a=$ $2^{n-1}-2^{i+1}-2^{i}-1$, where $0 \leq i \leq n-3$. Then

$$
f(x) \equiv \begin{cases}x+1 \bmod 2^{n} & \text { if } x \not \equiv-1 \bmod 2^{i} \\ x-2 a+3 \bmod 2^{n} & \text { if } x \equiv-1 \bmod 2^{i+1} \\ x-2 a-1 \bmod 2^{n} & \text { if } x \equiv 2^{i}-1 \bmod 2^{i+1}\end{cases}
$$

Proof. If $i=0$, then $a=2^{n-1}-2^{2}$. Hence by the case $i=2$ in The-
 case $i=0$ in this theorem. Let $x=x_{n-1} \cdots x_{i} \cdots x_{0}$. If $x \not \equiv a \bmod$ 2^{n-1}, then there is the least nonnegative integer $k \leq n-2$ such that $x_{k} \neq a_{k}$. In this case $[f(x)]_{l}=\left\{\begin{array}{ll}1 \oplus x_{l} & \text { if } l \leq k \\ x_{l} & \text { if } l>k .\end{array}\right.$ If $k \leq i-1$, then $x=x_{n-1} \cdots x_{i} 101 \cdots 1$ and $f(x)=x_{n-1} \cdots x_{i} 110 \cdots 0$. Hence $f(x) \equiv$ $x+1 \bmod 2^{n}$. If $k=i$, then $x=x_{n-1} \cdots x_{i+1} 11 \cdots 1$ and $f(x)=$ $x_{n-1} \cdots x_{i+1} 000 \cdots 0$. Hence $f(x)=x-2^{i+1}+1 \bmod 2^{n}$. If $k=i+1$, then $x=x_{n-1} \cdots x_{i+2} 101 \cdots 1$ and $f(x)=x_{n-1} \cdots x_{i+2} 010 \cdots 0$. Hence $f(x) \equiv x-2^{i+1}+1 \bmod 2^{n}$. If $k>i+1$, then $x=x_{n-1} \cdots x_{i+2} 001 \cdots 1$ and $f(x)=y_{n-1} \cdots y_{i+2} 110 \cdots 0$, where $y_{l}=x_{l} \oplus 1$ for all $l \leq k$ and $y_{l}=x_{l}=1$ for all $l>k$. Hence $f(x) \equiv x+2^{i+2}+2^{i+1}+1 \equiv x-2 a-1$ $\bmod 2^{n}$.

Remark 3.14. We get 3 sequences in Example 3.4, Example 3.7 and Example 3.10. Even though finding functions that generate 3 sequences is not hard, compared to the other 2 sequences, it could be difficult to find a function that generates the sequence in Example 3.10. In general it
is hard to find a function from a sequence by generated general functions $\alpha_{1}, \cdots, \alpha_{n-1}$. It is important in stream ciphers to obtain a function that generates a random number sequence generated by the given suitable functions $\alpha_{1}, \cdots, \alpha_{n-1}$. It is one of the valuable topics which will be studied in future.

References

[1] A. Kilmov, Applications of T-functions in Cryptography, Ph.D. Thesis Weizmann Institute Science, 2005.
[2] A. Kilmov and A. Shamir, Applications of T-functions in Cryptography, 2005.
[3] A. Kilmov and A. Shamir, A New Class of Invertible Mappings, CHES 2002, LNCS 2523, 470-483, 2003.
[4] A. Kilmov and A. Shamir, Cryptographic Applications of T-functions, SAC 2003, LNCS 3006, 248-261, 2004.
[5] A. Kilmov and A. Shamir, New Cryptographic Primitives Based on Multiword T-Functions, FSE 2004, LNCS 3017, 1-15, 2004.
[6] A. Kilmov and A. Shamir, New Applications of T-functions in Block Ciphers and Hash Functions, FSE 2005, LNCS 3557, 18-31, 2005.
[7] M. S. Rhee, On a characterization of T-function with on cycle property, J. of the Chungcheong Math. Soc. 21 (2008), no. 2, 259-268.
[8] M. S. Rhee, On secure binary sequences generated by a function $f(x)=x+$ $\left(g(x)^{2} \vee C\right) \bmod 2^{n}$, J. of the Chungcheong Math. Soc. 22 (2009), no. 4, 777-789.
*
Department of Mathematics
Dankook University
Cheonan 330-714, Republic of Korea
E-mail: msrhee@dankook.ac.kr

[^0]: Received March 21, 2015; Accepted April 24, 2015.
 2010 Mathematics Subject Classification: Primary 94A60.
 Key words and phrases: a T-function, an n-bit word, period, a boolean function, a single cycle T-function.

 The present research was conducted by the research fund of Dankook University in 2014.

