A NONDEGENERATE BILINEAR FORM INDUCED BY COLOR POISSON BIALGEBRA

Sel-Qwon Oh* and Hanna Sim**

Abstract

Let H be a color Poisson bialgebra. Here we find a canonical nondegenerate bilinear form on $\mathfrak{g}(H) \times \mathfrak{m} / \mathfrak{m}^{2}$, where $\mathfrak{g}(H)$ and $\mathfrak{m} / \mathfrak{m}^{2}$ are certain color Lie algebras induced by H.

1. Introduction

For the definitions of the color Lie algebra and the color Poisson bialgebra, refer to [1, Definition 2.1 and Definition 4.4]. Let $H=(H=$ $\left.\oplus_{a \in G} H_{a}, m, \iota, \Delta, \eta,\{\cdot, \cdot\}, \epsilon\right)$ be a color Poisson bialgebra. For a homogeneous element $x \in H_{a}$, we set $|x|=a$. Set

$$
\mathfrak{m}=\operatorname{ker} \eta
$$

Then $\left(\mathfrak{m} / \mathfrak{m}^{2},[\cdot, \cdot], \epsilon\right)$ is a color Lie algebra with

$$
\left[x+\mathfrak{m}^{2}, y+\mathfrak{m}^{2}\right]=\{x, y\}+\mathfrak{m}^{2}
$$

by $\left[1\right.$, Theorem 4.9]. Here we construct a color Lie algebra $\left(\mathfrak{g}(H),[\cdot, \cdot], \epsilon^{-1}\right)$ induced by H such that there exists a canonical nondegenerate bilinear form on $\mathfrak{g}(H) \times \mathfrak{m} / \mathfrak{m}^{2}$. (See Theorem 2.3.)

Give a grading on the ground field \mathbf{k} of characteristic zero by

$$
\mathbf{k}_{e}=\mathbf{k}, \quad \mathbf{k}_{a}=\{0\}
$$

for all $e \neq a \in G$, where e is the identity element of G.
Since η is a morphism of G-graded algebras, the maximal ideal \mathfrak{m} is a G-graded ideal of H containing H_{a} for all $e \neq a \in G$. In particular, \mathfrak{m}^{2} is also a G-graded ideal. Note that $H=\mathfrak{m} \oplus \mathbf{k} 1$ as a vector space since $x=(x-\eta(x) 1)+\eta(x) 1$ and $x-\eta(x) 1 \in \mathfrak{m}$ for all $x \in H$. Choose a basis \mathfrak{C} of \mathfrak{m}^{2} consisting of homogeneous elements and then add a set \mathfrak{D} of

[^0]homogeneous elements in \mathfrak{m} such that the disjoint union $\mathfrak{B}=\{1\} \sqcup \mathfrak{C} \sqcup \mathfrak{D}$ forms a basis of H. For every $x \in \mathfrak{B}$, give a grading on the dual element $x^{*} \in H^{*}$ by
$$
\left|x^{*}\right|=|x| \text {. }
$$

Denoted by H° the subset of H^{*} consisting of $f \in H^{*}$ such that there exists a finite co-dimensional graded ideal I of H with $f(I)=0$. That is, $f \in H^{\circ}$ if and only if $f(I)=0$ for some graded ideal I such that the dimension of H / I is finite, and thus there exist finite elements x_{1}, \cdots, x_{n} of \mathfrak{B} such that $x_{1}+I, \cdots, x_{n}+I$ form a basis of H / I. Hence $f \in H^{\circ}$ is a linear combination of dual elements $x_{1}^{*}, \cdots, x_{n}^{*}$. It follows that H° is a G-graded vector space. For homogeneous elements $f, g \in H^{\circ}$, define a multiplication $f g$ by

$$
(f g)(x)=\sum f\left(x^{\prime}\right) g\left(x^{\prime \prime}\right)
$$

for any homogeneous element $x \in H$, where $\Delta(x)=\sum x^{\prime} \otimes x^{\prime \prime}$. Replacing ideals with finite codimension in [3, 9.1.1, 9.1.3] by G-graded ideals with finite codimension, we have $f g \in H^{\circ}$. Moreover H° is a G graded algebra since the comultiplication Δ of H is a G-graded algebra morphism. Hence H° is a color Lie algebra with bracket $[\cdot, \cdot]$ defined by

$$
\begin{equation*}
[f, g]=f g-\varepsilon^{-1}(|f|,|g|) g f \tag{1.1}
\end{equation*}
$$

for homogeneous elements $f, g \in H^{\circ}$ by [1, Lemma 2.4].

2. Main theorem

Denote by $\mathfrak{g}(H)$ the subspace of H° spanned by all homogeneous elements $f \in H^{\circ}$ such that

$$
f(1)=0, \quad f\left(\mathfrak{m}^{2}\right)=0
$$

Lemma 2.1. The space $\mathfrak{g}(H)$ is a color Lie subalgebra of $\left(H^{\circ},[\cdot, \cdot], \varepsilon^{-1}\right)$, where $[\cdot, \cdot]$ is given by (1.1).

Proof. Let f, g be homogeneous elements of $\mathfrak{g}(H)$. Then

$$
[f, g](1)=(f g)(1)-\varepsilon(|f|,|g|)^{-1}(g f)(1)=0
$$

by [1, Lemma 2.6] since $\Delta(1)=1 \otimes 1$. Let us show that $[f, g]\left(\mathfrak{m}^{2}\right)=0$. (Hence $[f, g] \in \mathfrak{g}(H)$.) For a homogeneous element $x \in H$, let $\Delta(x)=$
$\sum x^{\prime} \otimes x^{\prime \prime}$. Since

$$
\begin{aligned}
\sum\left(x^{\prime}\right. & \left.-\eta\left(x^{\prime}\right) 1\right) \otimes\left(x^{\prime \prime}-\eta\left(x^{\prime \prime}\right) 1\right) \\
& =\sum x^{\prime} \otimes x^{\prime \prime}-\sum 1 \otimes \eta\left(x^{\prime}\right) x^{\prime \prime}-\sum \eta\left(x^{\prime \prime}\right) x^{\prime} \otimes 1+\eta(x) 1 \otimes 1 \\
& =\Delta(x)-1 \otimes x-x \otimes 1+\eta(x)(1 \otimes 1)
\end{aligned}
$$

and $x^{\prime}-\eta\left(x^{\prime}\right) 1, x^{\prime \prime}-\eta\left(x^{\prime \prime}\right) 1 \in \mathfrak{m}$, we have

$$
\begin{equation*}
\Delta(x)=-\eta(x)(1 \otimes 1)+1 \otimes x+x \otimes 1 \quad \bmod (\mathfrak{m} \otimes \mathfrak{m}) . \tag{2.1}
\end{equation*}
$$

Hence, for homogeneous elements $x, y \in \mathfrak{m}$,

$$
\begin{align*}
\Delta(x y) & =\Delta(x) \Delta(y) \\
& =(1 \otimes x+x \otimes 1+\mathfrak{m} \otimes \mathfrak{m})(1 \otimes y+y \otimes 1+\mathfrak{m} \otimes \mathfrak{m}) \tag{by2.1}\\
& =x \otimes y+\varepsilon(|x|,|y|) y \otimes x \quad \bmod \left(\mathfrak{m}^{2} \otimes H+H \otimes \mathfrak{m}^{2}\right) .
\end{align*}
$$

Thus

$$
\begin{aligned}
{[f, g](x y)=} & f(x) g(y)+\varepsilon(|x|,|y|) f(y) g(x) \\
& -\varepsilon^{-1}(|f|,|g|)[g(x) f(y)+\varepsilon(|x|,|y|) g(y) f(x)]=0
\end{aligned}
$$

by [1, Lemma 2.6], as claimed. Hence $\mathfrak{g}(H)$ is a color Lie subalgebra of $\left(H^{\circ},[\cdot, \cdot], \varepsilon^{-1}\right)$.

Lemma 2.2. Let $P_{\eta}(H)$ be the subspace of H° spanned by all homogeneous elements $f \in H^{\circ}$ such that

$$
\begin{equation*}
f(x y)=\eta(x) f(y)+f(x) \eta(y) \tag{2.2}
\end{equation*}
$$

for all homogeneous elements $x, y \in H$. Then $P_{\eta}(H)=\mathfrak{g}(H)$.
Proof. If $f \in P_{\eta}(H)$ then $f(1)=0$ and $f\left(\mathfrak{m}^{2}\right)=0$ by (2.2). Hence $P_{\eta}(H) \subseteq \mathfrak{g}(H)$. Conversely, let $f \in \mathfrak{g}(H)$. For any homogeneous elements $x, y \in H$,

$$
x y=(x-\eta(x) 1)(y-\eta(y) 1)+\eta(x) y+\eta(y) x-\eta(x) \eta(y) 1,
$$

thus

$$
f(x y)=\eta(x) f(y)+f(x) \eta(y)
$$

since $(x-\eta(x) 1)(y-\eta(y) 1) \in \mathfrak{m}^{2}$. Hence $\mathfrak{g}(H) \subseteq P_{\eta}(H)$.
Let $H=(H, m, \iota, \Delta, \eta,\{\cdot, \cdot\})$ be a color Poisson bialgebra. We may assume that $\mathfrak{g}(H) \subseteq\left(\mathfrak{m} / \mathfrak{m}^{2}\right)^{*}$ since

$$
H=\mathfrak{m} \oplus \mathbf{k} 1, \quad f(1)=0, \quad f\left(\mathfrak{m}^{2}\right)=0
$$

for any $f \in \mathfrak{g}(H)$. Thus there exists the canonical bilinear form

$$
\begin{equation*}
\langle\cdot, \cdot\rangle: \mathfrak{g}(H) \times \mathfrak{m} / \mathfrak{m}^{2} \longrightarrow \mathbf{k}, \quad(f, z) \mapsto\langle f, z\rangle=f(z) . \tag{2.3}
\end{equation*}
$$

Theorem 2.3. The canonical bilinear form (2.3) is nondegenerate.
Proof. Let $f \in \mathfrak{g}(H)$. If $\left\langle f, \mathfrak{m} / \mathfrak{m}^{2}\right\rangle=0$ then $f=0$ since $\mathfrak{g}(H) \subseteq$ $\left(\mathfrak{m} / \mathfrak{m}^{2}\right)^{*}$.

Let $0 \neq x+\mathfrak{m}^{2} \in \mathfrak{m} / \mathfrak{m}^{2}$. Express x by a linear combination of elements in the basis \mathfrak{B}. Then there exists an element $b \in \mathfrak{B}$ such that $b \in \mathfrak{m} \backslash \mathfrak{m}^{2}$ and the coefficient of b in the linear combination of x is nonzero. Let b^{*} be the dual element of b. For any homogeneous elements $y, z \in H$, we have

$$
y z=(y-\eta(y) 1)(z-\eta(z) 1)+\eta(y) z+\eta(z) y-\eta(y) \eta(z) 1 .
$$

Thus

$$
b^{*}(y z)=\eta(y) b^{*}(z)+b^{*}(y) \eta(z) .
$$

Replacing ideals by G-graded ideals in the proof of [2, Theorem 1.3.1], we have $b^{*} \in \mathfrak{g}(H)$ by Lemma 2.2. Hence (2.3) is nondegenerate since $\left\langle b^{*}, x\right\rangle \neq 0$.

References

[1] I. Bakayoko and Sei-Qwon Oh, Color Hom-Lie bialgebras, submitted (2015).
[2] L. A. Lambe and D. E. Radford, Introduction to the quantum Yang-Baxter equation and quantum groups: An algebraic approach, Mathematics and Its Applications, vol. 423, Kluwer Academic Publishers, Dordrecht/Boston/London, 1997.
[3] S. Montgomery, Hopf algebras and their actions on rings, Conference Board of the Mathematical Sciences, no. 82, American Mathematical Society, Providence, Rhode Island, 1993.
*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: sqoh@cnu.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: hnsim@cnu.ac.kr

[^0]: Received Feburary 12, 2015; Accepted April 13, 2015.
 2010 Mathematics Subject Classification: 17B62, 17B63, 17 B 75.
 Key words and phrases: color Lie algebras, color Poisson bialgebras.
 Correspondence should be addressed to Sei-Qwon Oh, sqoh@cnu.ac.kr.
 *Supported by the CNU research fund of Chungnam National University.

