JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 28, No. 2, May 2015 http://dx.doi.org/10.14403/jcms.2015.28.2.307

A NONDEGENERATE BILINEAR FORM INDUCED BY COLOR POISSON BIALGEBRA

SEI-QWON OH* AND HANNA SIM**

ABSTRACT. Let H be a color Poisson bialgebra. Here we find a canonical nondegenerate bilinear form on $\mathfrak{g}(H) \times \mathfrak{m}/\mathfrak{m}^2$, where $\mathfrak{g}(H)$ and $\mathfrak{m}/\mathfrak{m}^2$ are certain color Lie algebras induced by H.

1. Introduction

For the definitions of the color Lie algebra and the color Poisson bialgebra, refer to [1, Definition 2.1 and Definition 4.4]. Let $H = (H = \bigoplus_{a \in G} H_a, m, \iota, \Delta, \eta, \{\cdot, \cdot\}, \epsilon)$ be a color Poisson bialgebra. For a homogeneous element $x \in H_a$, we set |x| = a. Set

$$\mathfrak{m} = \ker \eta$$
.

Then $(\mathfrak{m}/\mathfrak{m}^2, [\cdot, \cdot], \epsilon)$ is a color Lie algebra with

$$[x + \mathfrak{m}^2, y + \mathfrak{m}^2] = \{x, y\} + \mathfrak{m}^2$$

by [1, Theorem 4.9]. Here we construct a color Lie algebra $(\mathfrak{g}(H), [\cdot, \cdot], \epsilon^{-1})$ induced by H such that there exists a canonical nondegenerate bilinear form on $\mathfrak{g}(H) \times \mathfrak{m}/\mathfrak{m}^2$. (See Theorem 2.3.)

Give a grading on the ground field \mathbf{k} of characteristic zero by

$$\mathbf{k}_e = \mathbf{k}, \quad \mathbf{k}_a = \{0\}$$

for all $e \neq a \in G$, where e is the identity element of G.

Since η is a morphism of *G*-graded algebras, the maximal ideal \mathfrak{m} is a *G*-graded ideal of *H* containing H_a for all $e \neq a \in G$. In particular, \mathfrak{m}^2 is also a *G*-graded ideal. Note that $H = \mathfrak{m} \oplus \mathbf{k} 1$ as a vector space since $x = (x - \eta(x)1) + \eta(x)1$ and $x - \eta(x)1 \in \mathfrak{m}$ for all $x \in H$. Choose a basis \mathfrak{C} of \mathfrak{m}^2 consisting of homogeneous elements and then add a set \mathfrak{D} of

Received Feburary 12, 2015; Accepted April 13, 2015.

²⁰¹⁰ Mathematics Subject Classification: 17B62, 17B63, 17B75.

Key words and phrases: color Lie algebras, color Poisson bialgebras.

Correspondence should be addressed to Sei-Qwon Oh, sqoh@cnu.ac.kr.

^{*}Supported by the CNU research fund of Chungnam National University.

homogeneous elements in \mathfrak{m} such that the disjoint union $\mathfrak{B} = \{1\} \sqcup \mathfrak{C} \sqcup \mathfrak{D}$ forms a basis of H. For every $x \in \mathfrak{B}$, give a grading on the dual element $x^* \in H^*$ by

$$|x^*| = |x|.$$

Denoted by H° the subset of H^* consisting of $f \in H^*$ such that there exists a finite co-dimensional graded ideal I of H with f(I) = 0. That is, $f \in H^{\circ}$ if and only if f(I) = 0 for some graded ideal I such that the dimension of H/I is finite, and thus there exist finite elements x_1, \dots, x_n of \mathfrak{B} such that $x_1 + I, \dots, x_n + I$ form a basis of H/I. Hence $f \in H^{\circ}$ is a linear combination of dual elements x_1^*, \dots, x_n^* . It follows that H° is a G-graded vector space. For homogeneous elements $f, g \in H^{\circ}$, define a multiplication fg by

$$(fg)(x) = \sum f(x')g(x'')$$

for any homogeneous element $x \in H$, where $\Delta(x) = \sum x' \otimes x''$. Replacing ideals with finite codimension in [3, 9.1.1, 9.1.3] by *G*-graded ideals with finite codimension, we have $fg \in H^{\circ}$. Moreover H° is a *G*-graded algebra since the comultiplication Δ of *H* is a *G*-graded algebra morphism. Hence H° is a color Lie algebra with bracket $[\cdot, \cdot]$ defined by

(1.1)
$$[f,g] = fg - \varepsilon^{-1}(|f|,|g|)gf$$

for homogeneous elements $f, g \in H^{\circ}$ by [1, Lemma 2.4].

2. Main theorem

Denote by $\mathfrak{g}(H)$ the subspace of H° spanned by all homogeneous elements $f\in H^\circ$ such that

$$f(1) = 0, \quad f(\mathfrak{m}^2) = 0.$$

LEMMA 2.1. The space $\mathfrak{g}(H)$ is a color Lie subalgebra of $(H^{\circ}, [\cdot, \cdot], \varepsilon^{-1})$, where $[\cdot, \cdot]$ is given by (1.1).

Proof. Let f, g be homogeneous elements of $\mathfrak{g}(H)$. Then

$$[f,g](1) = (fg)(1) - \varepsilon(|f|,|g|)^{-1}(gf)(1) = 0$$

by [1, Lemma 2.6] since $\Delta(1) = 1 \otimes 1$. Let us show that $[f, g](\mathfrak{m}^2) = 0$. (Hence $[f, g] \in \mathfrak{g}(H)$.) For a homogeneous element $x \in H$, let $\Delta(x) =$

308

Nondegenerate bilinear form

$$\sum x' \otimes x''. \text{ Since}$$

$$\sum (x' - \eta(x')1) \otimes (x'' - \eta(x'')1)$$

$$= \sum x' \otimes x'' - \sum 1 \otimes \eta(x')x'' - \sum \eta(x'')x' \otimes 1 + \eta(x)1 \otimes 1$$

$$= \Delta(x) - 1 \otimes x - x \otimes 1 + \eta(x)(1 \otimes 1)$$

and $x' - \eta(x')1, x'' - \eta(x'')1 \in \mathfrak{m}$, we have

(2.1)
$$\Delta(x) = -\eta(x)(1 \otimes 1) + 1 \otimes x + x \otimes 1 \mod(\mathfrak{m} \otimes \mathfrak{m}).$$

Hence, for homogeneous elements $x, y \in \mathfrak{m}$,

$$\begin{aligned} \Delta(xy) &= \Delta(x)\Delta(y) \\ &= (1 \otimes x + x \otimes 1 + \mathfrak{m} \otimes \mathfrak{m})(1 \otimes y + y \otimes 1 + \mathfrak{m} \otimes \mathfrak{m}) \\ &= x \otimes y + \varepsilon(|x|, |y|)y \otimes x \mod(\mathfrak{m}^2 \otimes H + H \otimes \mathfrak{m}^2). \end{aligned}$$
 (by 2.1)

Thus

$$\begin{split} [f,g](xy) &= f(x)g(y) + \varepsilon(|x|,|y|)f(y)g(x) \\ &- \varepsilon^{-1}(|f|,|g|)[g(x)f(y) + \varepsilon(|x|,|y|)g(y)f(x)] = 0 \end{split}$$

by [1, Lemma 2.6], as claimed. Hence $\mathfrak{g}(H)$ is a color Lie subalgebra of $(H^{\circ}, [\cdot, \cdot], \varepsilon^{-1})$.

LEMMA 2.2. Let $P_{\eta}(H)$ be the subspace of H° spanned by all homogeneous elements $f \in H^{\circ}$ such that

(2.2)
$$f(xy) = \eta(x)f(y) + f(x)\eta(y)$$

for all homogeneous elements $x, y \in H$. Then $P_{\eta}(H) = \mathfrak{g}(H)$.

Proof. If $f \in P_{\eta}(H)$ then f(1) = 0 and $f(\mathfrak{m}^2) = 0$ by (2.2). Hence $P_{\eta}(H) \subseteq \mathfrak{g}(H)$. Conversely, let $f \in \mathfrak{g}(H)$. For any homogeneous elements $x, y \in H$,

$$xy = (x - \eta(x)1)(y - \eta(y)1) + \eta(x)y + \eta(y)x - \eta(x)\eta(y)1,$$

thus

$$f(xy) = \eta(x)f(y) + f(x)\eta(y)$$

since $(x - \eta(x)1)(y - \eta(y)1) \in \mathfrak{m}^2$. Hence $\mathfrak{g}(H) \subseteq P_{\eta}(H)$.

Let $H = (H, m, \iota, \Delta, \eta, \{\cdot, \cdot\})$ be a color Poisson bialgebra. We may assume that $\mathfrak{g}(H) \subseteq (\mathfrak{m}/\mathfrak{m}^2)^*$ since

$$H = \mathfrak{m} \oplus \mathbf{k}1, \quad f(1) = 0, \quad f(\mathfrak{m}^2) = 0$$

for any $f \in \mathfrak{g}(H)$. Thus there exists the canonical bilinear form (2.3) $\langle \cdot, \cdot \rangle : \mathfrak{g}(H) \times \mathfrak{m}/\mathfrak{m}^2 \longrightarrow \mathbf{k}, \quad (f, z) \mapsto \langle f, z \rangle = f(z).$ 309

Sei-Qwon Oh and Hanna Sim

THEOREM 2.3. The canonical bilinear form (2.3) is nondegenerate.

Proof. Let $f \in \mathfrak{g}(H)$. If $\langle f, \mathfrak{m}/\mathfrak{m}^2 \rangle = 0$ then f = 0 since $\mathfrak{g}(H) \subseteq (\mathfrak{m}/\mathfrak{m}^2)^*$.

Let $0 \neq x + \mathfrak{m}^2 \in \mathfrak{m}/\mathfrak{m}^2$. Express x by a linear combination of elements in the basis \mathfrak{B} . Then there exists an element $b \in \mathfrak{B}$ such that $b \in \mathfrak{m} \setminus \mathfrak{m}^2$ and the coefficient of b in the linear combination of x is nonzero. Let b^* be the dual element of b. For any homogeneous elements $y, z \in H$, we have

$$yz = (y - \eta(y)1)(z - \eta(z)1) + \eta(y)z + \eta(z)y - \eta(y)\eta(z)1.$$

Thus

$$b^*(yz) = \eta(y)b^*(z) + b^*(y)\eta(z).$$

Replacing ideals by *G*-graded ideals in the proof of [2, Theorem 1.3.1], we have $b^* \in \mathfrak{g}(H)$ by Lemma 2.2. Hence (2.3) is nondegenerate since $\langle b^*, x \rangle \neq 0$.

References

- [1] I. Bakayoko and Sei-Qwon Oh, Color Hom-Lie bialgebras, submitted (2015).
- [2] L. A. Lambe and D. E. Radford, Introduction to the quantum Yang-Baxter equation and quantum groups: An algebraic approach, Mathematics and Its Applications, vol. 423, Kluwer Academic Publishers, Dordrecht/Boston/London, 1997.
- [3] S. Montgomery, Hopf algebras and their actions on rings, Conference Board of the Mathematical Sciences, no. 82, American Mathematical Society, Providence, Rhode Island, 1993.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: sqoh@cnu.ac.kr

**

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: hnsim@cnu.ac.kr

310