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HYPERBOLICITY FOR CLOSED RELATIONS

Gui Seok Kim* and Kyung Bok Lee**

Abstract. Hyperbolicity is a core of dynamics. Shadowness and
expansiveness for homeomorphisms have been studied by J. Om-
bach([3], [4], [5]). We study the hyperbolicity (i.e., expansivity and
the shadowing property) and the Anosov relation for a closed rela-
tion.

1. Introduction and preliminaries

In this paper, we study whether qualitative properties which were
established in flows and homeomorphism dynamics will also be estab-
lished for compact closed relation and investigate the hyperbolicity and
the Anosov relation.

Let (X1, d1), (X2, d2) be arbitrary compact metric spaces. A relation
f : X1 → X2 is considered as a map from X1 to the power set of X2,
that is, each x ∈ X1 corresponds to a subset f(x) of X2, or a subset of
X1 ×X2 so that y ∈ f(x) means (x, y) ∈ f . We define the domain of f
by

Dom(f) = {x ∈ X1 | f(x) 6= ∅}.
For relations f : X1 → X2 and g : X2 → X3 we define the inverse

f−1 : X2 → X1, and the composition g ◦ f : X1 → X3 by
x ∈ f−1(y) ⇐⇒ y ∈ f(x),

and
y ∈ (g ◦ f)(x) ⇐⇒ z ∈ f(x) and y ∈ g(z) for some z ∈ X2.
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The usual composition properties of associativity, identity, and in-
version generalize to the relation, e.g., 1X2 ◦ f = f = f ◦ 1X1 and
(g ◦ f)−1 = f−1 ◦ g−1.

There are additional algebraic properties as well. For example, com-
position distributes over the union:

(∪mgm) ◦ (∪nfn) = ∪m,n(gm ◦ fn)
For f : X → X we define fn to be the n-fold composition of f

(n = 0, 1, 2, · · · with f0 = 1X and f1 = f by definition). f−n is defined
to be (f−1)n (which equals (fn)−1).

For a relation f : X1 → X2 and a subset A of X1 the image f(A) ⊂ X2

is defined by
f(A) = {y | (x, y) ∈ f for some x ∈ A} = ∪{f(x) | x ∈ A}.

Definition 1.1. [1] A relation f : X1 → X2 is said to be a closed
relation if it is a closed subset of X1 ×X2 and f : X1 → X2 is said to
be a compact relation if f(x) is a compact subset of X2 for any x ∈ X1.

The identity map 1X : X → X is identified with the diagonal subset
of X ×X. The ε neighborhoods of the diagonal are important examples
of relations which are not functions.

Vε ≡ {(x1, x2) ∈ X ×X | d(x1, x2) < ε},
V ε ≡ {(x1, x2) ∈ X ×X | d(x1, x2) ≤ ε}

Vε is open. V ε is closed although it may be larger than the closure of
Vε (i.e. V ε need not equal cl(Vε)).

Theorem 1.2. [1] Let f : X1 → X2 and g : X2 → X3 be closed
relations.

(1) The domain Dom(f) is a closed subset of X1.
(2) The inverse f−1 : X2 → X1 is a closed relation.
(3) The composition g ◦ f : X1 → X3 is a closed relation.
(4) If A is a closed subset of X1 then the image f(A) is a closed subset

of X2.
(5) If B is a closed subset of X2, then {x | f(x) ∩ B 6= ∅} is a closed

subset of X1.
(6) If U is an open subset of X2, then {x | f(x) ⊂ U} is an open subset

of X1.

Corollary 1.3. Corollary 1.2 Let f : X1 → X2 be a closed relation.
For every closed subset A of X1 and every ε > 0 there exists a δ > 0
such that

f ◦ V δ(A) = f(V δ(A)) ⊂ Vε(f(A)) = Vε ◦ f(A).
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Proof. Since Vε(f(A)) = ∪y∈f(A)Vε(y) = ∪y∈f(A)B(y, ε) is an open
set, {x | f(x) ⊂ Vε(f(A))} is open in X1 by Theorem 1.2(6) and it
contains A. Hence, it contains some δ neighborhood of A.

2. Hyperbolicity and Anosov relation

Shadowness, expansiveness and hyperbolicity for homeomorphisms
have been studied by Jerzy Ombach([3], [4], [5]). In this section, we
study the hyperbolicity (i.e., expansivity and the shadowing property)
and the Anosov relation for a closed relation.

Let (X, d) be a compact metric space and f be a closed relation on
X whose domain is X. On the product space XZ we will use the metric,
defined by Miller and Akin,

(2.1) ρ(x, y) = sup{min{d(xi, yi),
1
|i|} | i ∈ Z}

for all x= (xi)i∈Z, y= (yi)i∈Z, with min{a, 1
0} = a by convention.

To show that XZ is metrizable, we first need the following Proposition
2.1:

Proposition 2.1. Let x, y ∈ XZ and ε > 0 be given. Then ρ(x, y) ≤
ε if and only if d(xi, yi) ≤ ε for all i such that |i| < 1

ε .

Proof. For given ε > 0, suppose that ρ(x, y) ≤ ε for some x, y ∈ XZ.
It is trivial that

d(x0, y0) = min{d(x0, y0),
1
0
} ≤ ρ(x, y) ≤ ε,

for i = 0.
Let 0 < |i| < 1

ε , then 1
|i| > ε. If d(xi, yi) ≥ 1

|i| , then

ε ≥ ρ(x, y) ≥ min{d(xi, yi),
1
|i|} =

1
|i| > ε,

we have a contradiction. Thus d(xi, yi) < 1
|i| . Hence

d(xi, yi) = min{d(xi, yi),
1
|i|} ≤ ρ(x, y) ≤ ε.

Suppose that d(xi, yi) ≤ ε for all |i| < 1
ε , then

min{d(xi, yi),
1
|i|} ≤ d(xi, yi) ≤ ε.
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Let |i| ≥ 1
ε . Since 1

|i| ≤ ε, we have

min{d(xi, yi),
1
|i|} ≤

1
|i| ≤ ε.

Thus ρ(x, y) ≤ ε.

Proposition 2.2. ρ is a metric that induces the product topology
on XZ.

Proof. First, we prove that ρ is a metric on XZ. Let x, y, z ∈ XZ.
ρ(x, y) ≥ 0 is trivial. If x = y, then ρ(x, y) = 0. If ρ(x, y) = 0 and
x 6= y, then there exists i ∈ Z such that xi 6= yi. If i = 0, we have that

ρ(x, y) ≥ min{d(x0, y0),
1
0
} = d(x0, y0) > 0.

This is a contradiction. If i 6= 0, we have

ρ(x, y) ≥ min{d(xi, yi),
1
|i|} > 0

because d(xi, yi) > 0 and 1
|i| > 0. This is a contradiction. Therefore

x = y. ρ(x, y) = ρ(y, x) is clear. For i = 0, we have

min{d(x0, y0),
1
0
} = d(x0, y0) ≤ d(x0, z0) + d(z0, y0)

= min{d(x0, z0),
1
0
}+ min{d(z0, y0),

1
0
}

≤ ρ(x, z) + ρ(z, y)

For i 6= 0, we have

min{d(xi, yi),
1
|i|} ≤ d(xi, yi) ≤ d(xi, zi) + d(zi, yi)

= min{d(xi, zi),
1
|i|}+ min{d(zi, yi),

1
|i|}

≤ ρ(x, z) + ρ(z, y)

when d(xi, zi) ≤ 1
|i| , d(zi, yi) ≤ 1

|i| , and

min{d(xi, yi),
1
|i|} ≤

1
|i|

= min{d(xi, zi),
1
|i|} or min{d(zi, yi),

1
|i|}

≤ ρ(x, z) or ρ(z, y)

≤ ρ(x, z) + ρ(z, y)



Hyperbolicity for closed relations 291

when d(xi, zi) ≥ 1
|i| or d(zi, yi) ≥ 1

|i| .

Hence ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ XZ. Therefore ρ
is a metric on XZ.

Let =ρ be the topology induced by ρ and let =p be the product
topology on XZ.

To show that =ρ = =p, let U ∈ =ρ. For all x ∈ U , there exists an
ε > 0 such that Bρ(x, ε) ⊂ U . Since ε > 0, we can choose a natural
number n such that 2

ε < n. Let Vi ≡ Bd(xi,
ε
2) for −n ≤ i ≤ n, and

Vi = X for |i| > n. Then V ≡ ∏∞
i=−∞ Vi is a basic neighborhood of x in

=p. If y ∈ V , since d(xi, yi) < ε
2 for all i such that |i| < 2

ε , we obtain
ρ(x, y) ≤ ε

2 < ε by Proposition 2.1. Thus V ⊂ Bρ(x, ε) ⊂ U . This
means =ρ ⊂ =p.

Let U ∈ =p and x ∈ U . By definition of the product topology, there
exists basic open set V =

∏∞
i=−∞ Vi in =p such that x ∈ V ⊂ U . We

can find natural number n which Vi = X for all |i| > n. There exists
an ε > 0 such that Bd(xi, ε) ⊂ Vi for all |i| ≤ n. Choose δ > 0 with
n < 1

δ and δ < ε. If ρ(x, y) < δ, then d(xi, yi) < δ < ε for all i such
that |i| < 1

δ by Proposition 2.1. This means yi ∈ Bd(xi, ε) ∈ Vi for all
|i| ≤ n. Thus y ∈ ∏∞

i=−∞ Vi = V ⊂ U . i.e., Bρ(x, δ) ⊂ U .

We denote by σ the shift homeomorphism on XZ and by π0 : XZ → X
the projection on the 0-th coordinate.

Proposition 2.3. Let x, y ∈ XZ. Then
sup{d(xi, yi) | i ∈ Z} = sup{ρ(σi(x), σi(y)) | i ∈ Z}.

Proof. Let x, y ∈ XZ. If x=y, then sup{d(xi, yi) | i ∈ Z} =
sup{ρ(σi(x), σi(y)) | i ∈ Z} = 0.

Suppose that there is a p > 0 such that

sup{d(xi, yi) | i ∈ Z} < p < sup{ρ(σi(x), σi(y)) | i ∈ Z}.
Then there exists a j ∈ Z such that

p < ρ(σj(x), σj(y)) = sup{min{d(σj(x)i, σj(y)i),
1
|i|} | i ∈ Z}.

By the definition of the sup, there exists a k ∈ Z such that

p < min{d(σj(x)k, σj(y)k),
1
|k|}.



292 Gui Seok Kim and Kyung Bok Lee

By the way,

p > sup {d(xi, yi) | i ∈ Z} ≥ d(xj+k, yj+k)

= d(σj(x)k, σj(y)k)

≥ min{d(σj(x)k, σj(y)k),
1
|k|}

> p.

This is a contradiction. Thus
sup{d(xi, yi) | i ∈ Z} ≥ sup{ρ(σi(x), σi(y)) | i ∈ Z}.

Suppose that there is a q > 0 such that

sup{d(xi, yi) | i ∈ Z} > q > sup{ρ(σi(x), σi(y)) | i ∈ Z}.
Then there exists a j ∈ Z such that d(xj , yj) > q.

q > sup
{
ρ(σi(x), σi(y)) | i ∈ Z}

≥ ρ(σj(x), σj(y))

≥ min{d(σj(x)0, σj(y)0),
1
0
}

= d(σj(x)0, σj(y)0)

= d(xj , yj) > q.

This is a contradiction. Thus

sup{d(xi, yi) | i ∈ Z} ≤ sup{ρ(σi(x), σi(y)) | i ∈ Z}.

The sample path space for f is the subspace Xf of XZ defined by the
condition

x ∈ Xf ⇐⇒ (xi, xi+1) ∈ f

for all i ∈ Z.

Proposition 2.4. Xf is a closed invariant subset of XZ.

Proof. Let x ∈ Xf . Then there exists a sequence (xn) in Xf such
that xn → x. For each i ∈ Z, since (xn

i , xn
i+1) ∈ f and (xn

i , xn
i+1) →

(xi, xi+1), we have (xi, xi+1) ∈ f = f . Thus x∈ Xf . Hence Xf is closed
in XZ. It is clear that Xf is invariant.

The homeomorphism σf on Xf is obtained by restricting the correspond-
ing shift. The restriction of the projection is denoted by π0 : Xf → X.

A relation f on X is called surjective if f(X) = X.
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For a closed subset A of X the restriction of f to A×A is

fA = f ∩ (A×A).

The sample path space of fA is Af = Xf ∩AZ.

Theorem 2.5. Let f be a closed relation on X. Then

(2.2) π0(Xf ) = ∩∞i=−∞f i(X).

Proof. Let x ∈ Xf . Since π0(x) = x0 ∈ f i(x−i) ⊂ f i(X) for all i ∈ Z,
we have

π0(Xf ) ⊂ ∩∞i=−∞f i(X).
Let x ∈ ∩∞i=−∞f i(X). For each positive integer n, there exist xn, x−n ∈

X such that
x ∈ fn(x−n) ∩ f−n(xn).

Define xn−n = x−n, xn
0 = x, xn

n = xn. Since xn
0 ∈ fn(xn−n) and

xn
n ∈ fn(xn

0 ), there exist

xn
−n+1, · · · , xn

−1, x
n
1 , · · · , xn

n−1 ∈ X

such that xn
i+1 ∈ f(xn

i ) for −n ≤ i < n. For each i ∈ Z, the sequence
(xn

i )n≥|i| has a convergent subsequence. Let xn
i → xi as n →∞. Since

(xn
i , xn

i+1) ∈ f and (xn
i , xn

i+1) → (xi, xi+1) as n →∞,
we have (xi, xi+1) ∈ f = f . Thus x=(xi)i∈Z ∈ Xf and x = x0 ∈

π0(Xf ).
This proves Theorem 2.5.

This set π0(Xf ) = ∩∞i=−∞f i(X), denoted by D(f), is called the dy-
namic domain of f .

Proposition 2.6. For a closed subset A of X the following conditions
are equivalent and when they hold A is called a surjective subset of X.

(1) fA is a surjective relation on A.
(2) A ⊂ f(A) ∩ f−1(A).
(3) π0(Af ) = A.
(4) There exists a σf -invariant subset K of Xf such that π0(K) = A.

The dynamic domain of f is the maximum surjective subset of X,
that is, if A is a surjective subset of X then A ⊂ D(f). In particular, f
is surjective if and only if D(f) = X.

Proof. Clearly, if f is surjective then π0(Xf ) = X. In particular,
applied to fA we get (1) ⇒ (3). The implication (3) ⇒ (4) is obvious.
To prove (4) ⇒ (2) let x ∈ A and choose x∈ K such that x0 = x. Since
x∈ Xf , we have x = x0 ∈ f(x−1) ∩ f−1(x1). By the invariance of K,
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σ−1
f (x), σf (x) ∈ K and so x−1 = π0(σ−1

f (x)) and x1 = π0(σf (x)) are in
π0(K) = A. Thus x ∈ f(A) ∩ f−1(A). If A ⊂ f(A) ∩ f−1(A) ⊂ f(A),
then

A = f(A) ∩A = fA(A).
This proves (2) ⇒ (1).

Remark. In general, if K is an σf -invariant subset of Xf such that
π0(K) ⊂ A then K ⊂ Af . That is, Af is the maximum σf -invariant
subset of π−1

0 (A) in Xf .

For any closed subset A of X

(2.3) D(fA) = π0(Af ) = ∩∞i=−∞f i
A(A).

is the maximum surjective subset of A.

Lemma 2.7. For closed subsets A and B of X the following conditions
are equivalent :

(1) D(fA) ⊂ D(fB)
(2) D(fA) ⊂ B
(3) Af ⊂ π−1

0 (B)
(4) Af ⊂ Bf

Proof. Since D(fB) ⊂ B, (1)⇒(2) is clear. Since π0(Af ) ⊂ B if
and only if Af ⊂ π−1

0 (B), (2)⇒(3) is obvious. Bf is the maximum σf -
invariant subset of π−1

0 (B). Since Af is σf -invariant, (3) implies (4). By
definition of the dynamic domain of f , (4) implies (1).

Let f and g be closed relations on X and Y , respectively. A con-
tinuous map h : X → Y is said to map f to g, written h : f → g if
(x1, x2) ∈ f implies (h(x1), h(x2)) ∈ g. This condition is equivalent to
the following inclusion:

h ◦ f ⊂ g ◦ h

A continuous map h : X → Y is called a semiconjugacy from f
to g if h is onto and h ◦ f = g ◦ h. A conjugacy is a homeomorphism
h : X → Y such that h maps f to g and h−1 maps g to f , or equivalently
a homeomorphism h such that

h ◦ f = g ◦ h.

If h maps f to g, then the induced map h∗ : XZ → Y Z defined by
h∗(x)i = h(xi) satisfies h∗(Xf ) ⊂ Yg.

Theorem 2.8. Let f and g be closed relations on X and Y , respec-
tively ; let a continuous map h : X → Y map f to g ; and let A and B
be closed subsets of X and Y respectively.
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(1) If A is surjective with respect to f , then B = h(A) is surjective
with respect to g.

(2) If h is a conjugacy from f to g, then h∗(Xf ) = Yg.
(3) If B is surjective with respect to g, A = h−1(B) and h is a semi-

conjugacy, then h(D(fA)) = B.

Proof. (1) For any y ∈ B = h(A) there exists x ∈ A such that
y = h(x). Since A is surjective, there exist x−1, x1 ∈ A such that
(x−1, x), (x, x1) ∈ f . We have

h(x−1), h(x1) ∈ h(A) = B
(h(x−1), h(x1)) = (h(x−1), y), (h(x1), h(x)) = (h(x1), y) ∈ g.

Thus B is surjective.
(2) It is clear h∗(Xf ) ⊂ Yg. Let y∈ Yg. Since h is onto, there exists

xi ∈ X such that h(xi) = yi. Since y∈ Yg, yi+1 ∈ g(yi) = g(h(xi)) =
(h ◦ f)(xi) and there exists xi+1 ∈ f(xi) such that h(xi+1) = yi+1. If
y∈ Yg and n ∈ Z+, then we can start at y−n and proceed inductively
forward to define xn

i ∈ X so that h(xn
i ) = yi and (xn

i , xn
i+1) ∈ f for

all i ≥ −n. For each i ∈ Z, the sequence (xn
i )n≥|i| has a convergent

subsequence. Let xn
i → xi as n →∞. Then x= (xi) ∈ Xf and h∗(x) =y.

Thus Yf ⊂ h∗(Xf ). Hence h∗(Xf ) = Yg.
(3) From (2) with A = h−1(B) it follows that h∗(Af ) = Bg. Now

apply π0 : Xf → X. Because π0 ◦ h∗ = h ◦ π0 and B is surjective,
h(D(fA)) = h(π0(Af )) = π0(h∗(Af )) = π0(Bg) = B.

A closed subset A of X is called isolated (rel a closed subset B of X)
with respect to f if there exists a γ > 0 such that

(2.4) x ∈ Xfand d(xi, A) ≤ γ for all i ∈ Z implies xi ∈ B for all i ∈ Z.

We call A isolated if A is isolated (rel A).

Theorem 2.9. Let f be a closed relation on X and A, B closed
subsets of X.

(a) A is isolated (rel B) with respect to f if and only if there exists
a closed neighborhood U of A such that the following equivalent
conditions hold:
(1) D(fU ) ⊂ D(fB)
(2) D(fU ) ⊂ B
(3) Uf ⊂ π−1

0 (B)
(4) Uf ⊂ Bf

(b) The following conditions are equivalent :
(1) A is isolated (rel B) with respect to f .
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(2) A is isolated (rel D(fB)) with respect to f .
(3) D(fA) is isolated (rel D(fB)) with respect to f .
(4) π−1

0 (A) is isolated (rel π−1
0 (B)) with respect to σf .

(5) Af is isolated (rel Bf ) with respect to σf .
(c) Assume g is a closed relation on Y and a continuous map h : Y →

X maps g to f . Let A1 = h−1(A) and B1 = h−1(B). If A is
isolated (rel B) with respect to f then A1 is isolated (rel B1) with
respect to g. Conversely, if A1 is isolated (rel B1) with respect to
g and h is a semiconjugacy then A is isolated (rel B) with respect
to f .

Proof. (a) The equivalences are clear from Lemma 2.7. Condition
(2.4) is ture if and only if (4) holds with U = {x ∈ X | d(x, A) ≤ γ}.

(b) (1) ⇔ (2) This follows from the equivalence of (1) with (2) in (a).
(2)⇒ (3) If A is isolated (rel B) then any closed subset of A is isolated

(rel B).
(3) ⇒ (1) Since D(fB) ⊂ B, D(fA) is isolated (rel B). By (a), there

exists a closed neighborhood G of D(fA) such that Gf ⊂ Bf . (2.3) and
compactness imply that

∩N
k=−Nfk

A(A) ⊂ Int(G)

for some natural number N . Let Un = {x ∈ X | d(x, A) ≤ 1
n}. Then

(Un) is a decreasing sequence of closed neighborhood of A with intersec-
tion A. Since the sequence (fUn) of closed relations decreases to fA, we
can find a closed neighborhood U = Um of A such that

(2.5) ∩N
k=−Nfk

U (U) ⊂ Int(G).

Let x∈ Uf . By (2.5) we have xi ∈ G for all i ∈ Z. Thus x∈ Gf ⊂ Bf .
Hence we have Uf ⊂ Bf and so by (a) A is isolated (rel B).

Before completing the proof of (b) we prove (c).
If A is isolated (rel B), then Uf ⊂ Bf for some closed neighborhood

U of A. Let U1 = h−1(U). Then U1 is a closed neighborhood of A1 =
h−1(A). If x∈ (U1)g, then h∗(x) ∈ h∗(Yg) = Xf . Since h∗(x)i = h(xi) ∈
h(U1) = h(h−1(U)) ⊂ U for all i ∈ Z, we have h∗(x) ∈ Uf ⊂ Bf . Thus
h(xi) = h∗(x)i ∈ B implying xi ∈ h−1(B) = B1 for all i ∈ Z. Hence
x∈ (B1)g so (U1)g ⊂ (B1)g. Therefore A1 is isolated (rel B1).

Assume A1 is isolated (rel B1). Then (U1)g ⊂ (B1)g for some closed
neighborhood U1 of A1 = h−1(A). By compactness, there exists a closed
neighborhood U of A such that h−1(U) ⊂ U1. Let x∈ Uf . Since h∗(Yg) =
Xf , there exists y∈ Yg such that h∗(y)=x. We have h(yi) = h∗(y)i =
xi ∈ U and so yi ∈ h−1(U) ⊂ U1 for all i ∈ Z. Thus y∈ (U1)g ⊂ (B1)g.
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Hence yi ∈ B1 = h−1(B) and h(yi) = xi ∈ B for all i ∈ Z, that is,
x∈ Bf . Therefore Uf ⊂ Bf and so A is isolated (rel B).

Returning to (b), (1) ⇔ (4) The continuous map π0 : Xf → X maps
σf to f . Since π0∗((Xf )σf

) = Xf , the equivalence of (1) with (4) follows
from (c).

(4) ⇔ (5) Af is the maximum σf -invariant subset of π−1
0 (A) and

similarly for Bf . Thus the equivalence of (4) with (5) is just (1) ⇔ (3)
applied to σf .

f × f is a closed relation on X ×X defined by
f × f(x1, x2) = (f(x1), f(x2)).

If A is a closed subset of X then A is surjective with respect to f if
and only if A×A is surjective with respect to f × f if and only if 1A is
surjective with respect to f × f .

A closed subset A of X is called expansive for f if 1A is isolated (rel
1X) with respect to f×f . That is, there exists a γ > 0 (called expansive
constant for A) such that

x, y ∈ Xf andmax(d(xi, A), d(yi, A), d(xi, yi)) ≤ γ for all i ∈ Z
implies x = y.

(2.6)

f is called an expansive relation if X is expansive, that is, 1X is
isolated with respect to f × f .

Theorem 2.10. Let h : X → Y be a semiconjugacy from a closed
relation f on X to the closed relation g on Y . Then g is an expansive
relation if and only if h−1 ◦ h is an isolated subset of X ×X.

Proof. We will prove that h−1 ◦ h = (h × h)−1(1Y ). Let (x, y) ∈
h−1 ◦ h. Then there exists z ∈ Y such that (x, z) ∈ h and (z, y) ∈ h−1.
Then (x, z), (y, z) ∈ h and so h(x) = z = h(y). Since (h× h)(x, y) =
(h(x), h(y)) = (z, z), we have

(x, y) = (h× h)−1(z, z) ∈ (h× h)−1(1Y ).

Let (x, y) ∈ (h× h)−1(1Y ). Then there exists (z, z) ∈ 1Y such that

(x, y) = (h× h)−1(z, z).

Since (z, z) = h × h(x, y) = (h(x), h(y)), we have (x, z), (y, z) ∈ h.
Then

(x, z) ∈ h and (z, y) ∈ h−1.
Thus (x, y) ∈ h−1 ◦ h.
g is expansive if and only if 1Y is isolated with respect to g×g. Since

h× h is a semiconjugacy from f × f to g × g, by Theorem 2.9(c), 1Y is
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isolated for g × g if and only if (h × h)−1(1Y ) = h−1 ◦ h is isolated for
(h× h)−1(g × g) = f × f .

Let γ ≥ 0. An element x of XZ is called a γ-chain for f if

d(xi+1, f(xi)) ≤ γ for all i ∈ Z.

An element x of XZ is said to γ-shadow an element y of XZ if

d(xi, yi) ≤ γ for all i ∈ Z.

If A is a surjective closed subset of X then A satisfies the shadowing
property in X if for every ε > 0 there exists a δ > 0 such that any δ-
chain for f in A is ε-shadowed by some 0-chain in X. That is if x∈ AZ

with d(xi+1, f(xi)) ≤ δ for all i ∈ Z, then there exists y∈ Xf such that
d(xi, yi) ≤ ε for all i ∈ Z.

We will need a pair of technical lemmas.

Lemma 2.11. Let A be a closed subset of X. For every ε > 0 there
exists a δ > 0 such that every δ-chain for f in V δ(A) is ε

2 -shadowed by
some ε-chain for fA.

Proof. In A×A, V ε
2
◦ fA ◦ V ε

2
is a neighborhood of the compact set

fA. Since

(V δ ◦ f) ∩ (V δ(A)× V δ(A)) → fA as δ → 0,

there exists a δ > 0 such that

(V δ ◦ f) ∩ (V δ(A)× V δ(A)) ⊂ V ε
2
◦ fA ◦ V ε

2
.

If x∈ V δ(A)Z is a δ-chain, then

(xi, xi+1) ∈ (V δ ◦ f) ∩ (V δ(A)× V δ(A)) for all i ∈ Z.

and so there exists yi ∈ A such that

d(xi, yi) ≤ ε

2
and d(xi+1, fA(yi)) ≤ ε

2
for all i ∈ Z.

Thus

d(yi+1, f(yi)) ≤ d(yi+1, xi+1) + d(xi+1, f(yi)) ≤ ε

2
+

ε

2
= ε.

Hence y= (yi) ∈ AZ is an ε-chain for fA and ε
2 -shadows x.
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Corollary 2.12. Let f be a closed relation on X and A be a sur-
jective subset of X. A satisfies the shadowing property in X if and
only if for every ε > 0 there exists a δ > 0 such that any δ-chain for
fA is ε-shadowed by some 0-chain for f in X. That is, if x ∈ AZ with
d(xi+1, f(xi) ∩ A) ≤ δ for all i ∈ Z, then there exists y ∈ Xf such that
d(xi, yi) ≤ ε for all i ∈ Z.

Proof. Assume δ1-chains for fA are ε
2 -shadowed by 0-chains for f .

Use Lemma 2.11 with ε replaced by min{ ε
2 , δ1} choose δ > 0 so that

any δ-chain for f in A can be ε
2 -shadowed by a δ1-chain for fA. Thus

any δ-chain for f in A is ε-shadowed by some 0-chain for f .
The converse is obvious.

Let f be a relation on X. f is said to be upper semicontinuous if
for any x ∈ X and any ε > 0 there exists δ > 0 such that d(x, y) < δ
implies f(y) ⊂ Bd(f(x), ε). f is said to be lower semicontinuous if for
any x ∈ X and any ε > 0 there exists δ > 0 such that d(x, y) < δ implies
f(x) ⊂ Bd(f(y), ε). f is said to be continuous if f is upper and lower
semicontinuous.

Proposition 2.13. A closed relation f on X is upper semicontinu-
ous.

Proof. Assume that f is not upper semicontinuous. Then there exist
x ∈ X and ε > 0 such that for any δ > 0 there exists y ∈ Bd(x, δ)
such that f(y) 6⊂ Bd(f(x), ε). For each n, there exists xn ∈ Bd(x, 1

n)
such that f(xn) 6⊂ Bd(f(x), ε). We can choose yn ∈ f(x) − Bd(f(x), ε).
Since X is compact, the sequence (yn) has a convergent subsequence.
Let yn → y as n → ∞. Since (xn, yn) ∈ f and (xn, yn) → (x, y) as
n → ∞, we have (x, y) ∈ f = f that is y ∈ f(x). Since d(yn, f(x)) ≥ ε
for all n, we have d(y, f(x)) ≥ ε. This is a contradiction. Thus f is
upper semicontinuous.

In the remainder of this paper, we assume that relations are lower
semicontinuous.

Proposition 2.14. Let f be a lower semicontinuous closed surjective
relation on X. Given any integer n ≥ 2 and any ε > 0 there exists δ > 0
such that if (y1, · · · , yn) is a δ-chain for f then there exists x∈ Xf such
that d(yi, xi) < ε for all i = 1, · · · , n.

Proof. Step 1. We will prove that for any ε > 0 there exists η > 0
such that if d(x, y) < η then f(x) ⊂ Bd(f(y), ε) and f(y) ⊂ Bd(f(x), ε).
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Let ε > 0. For each x ∈ X there exists ηx > 0 such that if d(x, y) < ηx

then
f(x) ⊂ Bd(f(y),

ε

2
) and f(y) ⊂ Bd(f(x),

ε

2
).

{Bd(x, ηx

2 )|x ∈ X} is an open cover of X. Since X is compact, there
exist x1, · · · , xn ∈ X such that X =

⋃n
i=1 Bd(xi,

ηi

2 ) where ηi = ηxi . Put

η = min{η1

2
, · · · ,

ηn

2
}.

Let x ∈ X and d(x, y) < η. There exists i such that x ∈ Bd(xi,
ηi

2 ). Since
d(xi, x) < ηi

2 < ηi, we have f(xi) ⊂ Bd(f(x), ε
2) and f(x) ⊂ Bd(f(xi), ε

2).
Since

d(xi, y) ≤ d(xi, x) + d(x, y) <
ηi

2
+ η ≤ ηi

2
+

ηi

2
= ηi,

we have f(xi) ⊂ Bd(f(y), ε
2) and f(y) ⊂ Bd(f(xi), ε

2). Thus we have
f(x) ⊂ Bd(f(xi), ε

2) ⊂ Bd(f(y), ε) and f(y) ⊂ Bd(f(xi), ε
2) ⊂ Bd(f(y), ε).

Step 2. We prove by induction on n. Assume that Proposition 2.14
holds for n. Given any ε > 0, by Step 1, there exists 0 < η < ε such
that if d(x, y) < η then

f(x) ⊂ Bd(f(y),
ε

2
) and f(y) ⊂ Bd(f(x),

ε

2
).

By induction hypothesis, there exists γ > 0 such that if (y1, · · · , yn) is
a γ-chain for f then there exists a z ∈ Xf such that d(yi, zi) < η for all
i = 1, · · · , n. Put

δ = min{γ,
ε

2
}.

Let (y1, · · · , yn+1) be a δ-chain for f . Since (y1, · · · , yn) is a γ-chain for
f , there exists a z ∈ Xf such that d(yi, zi) < η for all i = 1, · · · , n. Since
d(yn, zn) < η, we have f(yn) ⊂ Bd(f(zn), ε

2) and f(zn) ⊂ Bd(f(yn), ε
2).

Since d(yn+1, f(yn)) < δ ≤ ε
2 , there exists p ∈ f(yn) such that d(yn+1, p) <

ε
2 . Since p ∈ f(yn) ⊂ Bd(f(zn), ε

2), there exists q ∈ f(zn) such that
d(p, q) < ε

2 . We have

d(yn+1, q) ≤ d(yn+1, p) + d(p, q) <
ε

2
+

ε

2
= ε.

Define xi = zi for i ≤ n, xn+1 = q, xi+1 ∈ f(xi) for i ≥ n + 1. Then
x = (xi)i∈Z ∈ Xf and

d(yi, xi) < ε for all i = 1, · · · , n + 1.

This completes the proof of Proposition 2.14.

Lemma 2.15. Let 0 < ε < 1.
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(a) Assume (xi)i∈Z is an ε-chain for σf that is xi ∈ Xf and ρ(σf ( xi),
xi+1) ≤ ε for all i ∈ Z. Let yi = xi

0 = π0(xi) for each i ∈ Z, then
y = (yi)i∈Z ∈ XZ is an ε-chain for f and ρ(σi(y), xi) ≤ √

ε for all
i ∈ Z.

(b) Assume f is surjective. There exists a δ with 0 < δ ≤ ε such that
if y ∈ XZ is a δ-chain for f , then there exists an ε-chain (xi)i∈Z
for σf such that

(2.7) ρ(σi(y), xi) ≤ ε for all i ∈ Z.

Proof. (a) Since xi ∈ Xf , xi
1 ∈ f(xi

0) and so
d(yi+1, f(yi)) ≤ d(xi+1

0 , xi
1) = d(xi+1

0 , σf (xi)0) ≤ ρ(xi+1, σf (xi)) ≤ ε.

Thus y is an ε-chain for f .
Let |j| < 1√

ε
. We have

d(σi(y)j , xi
j) = d(yi+j , xi

j)

= d(xi+j
0 , xi

j)

≤
∑

k

d(xi+j−k−1
k+1 , xi+j−k

k )

=
∑

k

d(σf (xi+j−k−1)k, xi+j−k
k )

where the summation is over 0 ≤ k < j if j > 0 and over j ≤ k < 0 if
j < 0. Since (xi)i∈Z is an ε-chain for σf , ρ(σf (xj+j−k−1), xi+j−k) ≤ ε.
Since |k| ≤ |j| < 1√

ε
< 1

ε , d(σf (xi+j−k−1)k, xi+j−k
k ) ≤ ε by Proposition

2.1. Thus d(σi(y)j , xi
j) ≤ |j|ε <

√
ε. By Proposition 2.1, ρ(σi(y), xi) ≤√

ε for all i ∈ Z.
(b) Fix n > 1

ε . By Proposition 2.14, there exists a δ > 0 such that
for every δ-chain y for f and i ∈ Z there exists xi ∈ Xf such that

(2.8) d(xi
j , yi+j) ≤ ε

2
for |j| ≤ n.

In particular for |j| < 1
ε , we have

d(σf (xi)j , xi+1
j ) = d(xi

j+1, xi+1
j )

≤ d(xi
j+1, yi+j+1) + d(xi+1

j , yi+j+1)

≤ ε

2
+

ε

2
= ε.
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By Proposition 2.1, ρ(σf (xi), xi+1) ≤ ε for all i ∈ Z that is (xi) is an
ε-chain for σf . By (2.8)

d(xi
j , σi(y)j) ≤ ε for |j| < 1

ε

from which (2.7) follows from Proposition 2.1.

Theorem 2.16. Let f be a closed relation on X and A be a surjective
subset of X. A satisfies the shadowing property for f if and only if Af

satisfies the shadowing property for σf .

Proof. Assume A satisfies the shadowing property for f . Given any
ε ∈ (0, 1), let ε1 = ( ε

2)2 and let δ ∈ (0, ε1) be such that any δ-chain for
f in A is ε1-shadowed by some element of Xf . Let (xi) be a δ-chain for
σf in Af . Define y∈ AZ by yi = xi

0. By Lemma 2.15(a), y is a δ-chain
for f and

ρ(σi(y), xi) ≤ ε

2
for all i ∈ Z.

By the choice of δ, there exists z∈ Xf such that d(yi, zi) ≤ ε1 < ε
2 for

all i ∈ Z. Thus we have

ρ(σi(z), σi(y)) ≤ ε

2
for alli ∈ Z.

By the triangle inequality, (σi(z)) is a chain in Xf which ε-shadows
(xi).

Assume Af satisfies the shadowing property for σf . Given any ε ∈
(0, 1], let ε1 = ε

2 and choose δ1 ∈ (0, ε1) so that any δ1-chain for σf in
Af can be ε1-shadowed by some 0-chain for σf . Since A is a surjective
subset of X, the closed relation fA on A and ε replaced by δ1, choose
δ ∈ (0, δ1) satisfies the condition of the Lemma 2.15. Let y be a δ-chain
for σf . By the choice of δ, there exists a δ1-chain (xi) for σf such that
xi ∈ Af and ρ(σi(y), xi) ≤ δ1 for all i ∈ Z. By the choice of δ1, there
exists z∈ Xf such that

ρ(σi
f (z), xi) ≤ ε1 for all i ∈ Z.

Thus z is a 0-chain for f and

ρ(σi
f (z), σi(y)) ≤ δ1 + ε1 ≤ ε for all i ∈ Z.

Hence z ε-shadows y. By Corollary 2.12, it follows that A satisfies
the shadowing property for f .

A closed surjective subset A of X is called a hyperbolic subset for f
if it is an expansive subset which satisfies the shadowing property. This
says that there exists a γ > 0 such that for every ε with 0 < ε ≤ γ there
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exists a δ > 0 so that any δ-chain for f in A is ε-shadowed by a unique
0-chain for f in X.

f is called an Anosov relation if it is a surjective relation and X is
hyperbolic for f .

Theorem 2.17. Let f be a closed relation on X and let A be a closed
surjective subset of X. The following conditions are equivalent and when
they hold we call A an Anosov subset.

(1) The restriction fA is an Anosov relation on A and A is an isolated
subset.

(2) The restriction fA is an Anosov relation on A and A is an expansive
subset of X for f .

(3) A is an isolated hyperbolic subset of X.

Proof. (3) ⇒ (1) and (2). Let γ > 0 satisfy (2.4) with B = A and
(2.6). Given ε > 0, choose δ > 0 so that any δ-chain for f in A can be
min(ε, γ)-shadowed by a 0-chain for f . Thus if x is a δ-chain for fA,
then there exists y∈ Xf with

d(xi, yi) ≤ min(ε, γ) for all i ∈ Z.
By (2.4), it follows that yi ∈ A for all i ∈ Z and so y∈ Af . Thus y is

a fA chain ε-shadowing x. This implies that A satisfies the shadowing
property for fA. A is expansive for fA with the same constant γ. Thus
fA is Anosov. A is isolated and expansive for f by assumption.

(1) and (2) ⇒ (3) By Corollary 2.12, A satisfies the shadowing prop-
erty when fA is Anosov. By assumption, A is isolated and expansive for
f .

(1) ⇒ (2) Let γ > 0 satisfy (2.4) with B = A and (2.6) for fA. It
follows that (2.6) holds for f . That is, if x, y∈ Xf and d(xi, A) ≤ γ,
d(yi, A) ≤ γ for all i ∈ Z, then by (2.4), xi, yi ∈ A for all i ∈ Z. That
is, x, y∈ Af and so (2.6) for fA implies xi = yi for all i ∈ Z.

(2) ⇒ (1) Let γ > 0 satisfy (2.6). Choose 0 < δ1 ≤ γ
2 so that every

δ1-chain for fA can be γ
2 -shadowed by some fA chain. By Lemma 2.11,

we can choose 0 < δ ≤ δ1 so that any δ-chain for f in Vδ(A) can be
γ
2 -shadowed by a δ1-chain for fA. Assume x∈ Xf with d(xi, A) ≤ δ for
all i ∈ Z. We prove xi ∈ A for all i ∈ Z which will imply A is isolated.
Since x is a f chain in V δ(A)Z, it is γ

2 -shadowed by some δ1-chain y for
fA. Thus y is γ

2 -shadowed by some fA chain z. In particular, x, y∈ Xf

with d(xi, zi) ≤ γ for all i ∈ Z and zi ∈ A for all i ∈ Z. By (2.6) xi = zi

and so xi ∈ A for all i ∈ Z.

Theorem 2.18. Let f be a closed relation on X with the sample path
homeomorphism σf on Xf . Let A be a surjective subset of X. Each of
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the following properties holds for A with respect to f if and only if the
corresponding property holds for Af with respect to σf .

(1) A is isolated.
(2) A is expansive.
(3) A satisfies the shadowing property.
(4) A is hyperbolic.
(5) A is Anosov.

Proof. For (1) we apply Theorem 2.9(b) with A = B. For (2) we
apply Theorem 2.9(b) to the relation f×f and the closed subset 1A and
1X . Observe that (1A)f×f = 1Af

. For (3) apply Theorem 2.16. For (4)
use (2) and (3). For (5) use (1), (2) and (3), applying Theorem 2.17.

Now we describe some simple properties.

Lemma 2.19. If A is a clopen subset of X, then A is isolated with
respect to f . If f is a clopen surjective relation on X, then f satisfies
the shadowing property.

Proof. Since A a is clopen subset of X, there exists a γ > 0 such
that B(A, γ) = A. Let x∈ Xf and d(xi, A) < γ for all i ∈ Z. Since
xi ∈ B(A, γ) = A for all i ∈ Z, we have x∈ Af . Thus A is isolated with
respect to f . Since f is an open subset of X ×X, for every (x, y) ∈ f
there exists an ε(x, y) > 0 such that

B(x, ε(x, y))×B(y, ε(x, y)) ⊂ f.

Then {B(x, 1
2ε(x, y))×B(y, 1

2ε(x, y)) | (x, y) ∈ f} is an open cover
of f . Since f is compact, there exist finitely many points (x1, y1), · · · ,
(xn, yn) ∈ f such that

f ⊂ ∪n
i=1B(xi,

1
2
εi)×B(yi,

1
2
εi),

where εi = ε(xi, yi) for all i. Let ε = min{1
2εi | i = 1, 2, · · · , n}. To

prove that Vε ◦ f = f , let (p, q) ∈ Vε ◦ f . There exists r ∈ X such
that (p, r) ∈ f and (r, q) ∈ Vε. We can choose i so that (p, r) ∈
B(xi,

1
2εi)× B(yi,

1
2εi). Then d(p, xi) < 1

2εi < εi. Since d(r, yi) < 1
2εi

and d(q, r) < ε ≤ 1
2εi, we have

d(q, yi) ≤ d(q, r) + d(r, yi) <
1
2
εi +

1
2
εi = εi.

Thus (p, q) ∈ B(xi, εi) × B(yi, εi) ⊂ f and so Vε ◦ f ⊂ f . Since
f ⊂ Vε ◦ f , we have Vε ◦ f = f . So any ε-chain for f is a 0-chain for f .
Hence f has the shadowing property.
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Corollary 2.20. (a) If X is any compact metric space, then the
shift homeomorphism σ on XZ satisfies the shadowing property.

(b) If X is a finite set and f is any relation on X, then σf on Xf is
an Anosov homeomorphism.

Proof. (a) Since f = X × X is a clopen surjective relation on X,
by Lemma 2.19, f satisfies the shadowing property. By Theorem 2.18,
σf = σ satisfies the shadowing property.

(b) We replace X by D(f) if necessary to assume that f is surjective.
Since X ×X is a discrete space, f is a clopen surjective relation on X.
By Lemma 2.19 and Theorem 2.18, σf satisfies the shadowing property.
Since 1X is a clopen subset of X × X, by Lemma 2.19, 1X is isolated
with respect to f × f and so f is expansive. By Theorem 2.18, σf is
expansive. Thus σf is an Anosov homeomorphism.
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