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HYPERBOLICITY FOR CLOSED RELATIONS

Gut SEok Kim* AND KYUNG Bok LEE**

ABSTRACT. Hyperbolicity is a core of dynamics. Shadowness and
expansiveness for homeomorphisms have been studied by J. Om-
bach([3], [4], [5]). We study the hyperbolicity (i.e., expansivity and
the shadowing property) and the Anosov relation for a closed rela-
tion.

1. Introduction and preliminaries

In this paper, we study whether qualitative properties which were
established in flows and homeomorphism dynamics will also be estab-
lished for compact closed relation and investigate the hyperbolicity and
the Anosov relation.

Let (X1, d1), (X2, d2) be arbitrary compact metric spaces. A relation
f X1 — X5 is considered as a map from X; to the power set of X,
that is, each x € X7 corresponds to a subset f(z) of Xo, or a subset of
X1 x Xy so that y € f(x) means (z, y) € f. We define the domain of f
by

Dom(f) = {z € X1 | f(x) # 0}.
For relations f : X1 — Xo and g : Xo — X3 we define the inverse
f~': Xy — Xy, and the composition go f : X1 — X3 by
ze [THy) = ye f(a),
and
y€ (go f)(x) <= z€ f(x) and y € g(z) for some z € Xo.
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The usual composition properties of associativity, identity, and in-
version generalize to the relation, e.g.,, 1x, o f = f = folx, and
(gof)t=flog™

There are additional algebraic properties as well. For example, com-
position distributes over the union:

(Umgm) © (Unfn) = Um,n(gm © fn)

For f : X — X we define f™ to be the n-fold composition of f
(n=0,1,2,--- with fO =1y and f! = f by definition). f~" is defined
to be (f~1)" (which equals (f")~1).

For arelation f : X7 — Xo and a subset A of X the image f(A) C Xo
is defined by

fA) ={y | (z, y) € f for some z € A} = U{f(z) | x € A}.

DEFINITION 1.1. [1] A relation f : X; — Xy is said to be a closed
relation if it is a closed subset of X7 x X5 and f : X7 — X5 is said to
be a compact relation if f(x) is a compact subset of X5 for any = € Xj.

The identity map 1x : X — X is identified with the diagonal subset
of X x X. The € neighborhoods of the diagonal are important examples
of relations which are not functions.

V. = {(.’Bl, xg) e X xX ’ d(l’l, 1'2) < 6},
Ve={(x1, 12) € X x X | d(z1, 72) < €}
V, is open. V. is closed although it may be larger than the closure of

Ve (i-e. V¢ need not equal cl(V)).

THEOREM 1.2. [1] Let f : X; — Xy and g : Xo — X3 be closed
relations.

(1) The domain Dom(f) is a closed subset of Xj.

(2) The inverse f~! : X9 — X1 is a closed relation.

(3) The composition go f : X1 — X3 is a closed relation.

(4) If A is a closed subset of X1 then the image f(A) is a closed subset
of XQ.

(5) If B is a closed subset of Xs, then {x | f(z) N B # 0} is a closed
subset of X;.

(6) IfU is an open subset of X, then {z | f(x) C U} is an open subset
of X1.

COROLLARY 1.3. Corollary 1.2 Let f : X1 — X9 be a closed relation.
For every closed subset A of X1 and every € > 0 there exists a § > 0
such that

foVs(A) = f(Vs(A)) C Ve(f(A)) = Veo f(A).
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Proof. Since Ve(f(A)) = Uyera)Ve(y) = Uyera)B(y, €) is an open
set, {z | f(x) C V.(f(A))} is open in X; by Theorem 1.2(6) and it
contains A. Hence, it contains some § neighborhood of A. O

2. Hyperbolicity and Anosov relation

Shadowness, expansiveness and hyperbolicity for homeomorphisms
have been studied by Jerzy Ombach([3], [4], [5]). In this section, we
study the hyperbolicity (i.e., expansivity and the shadowing property)
and the Anosov relation for a closed relation.

Let (X, d) be a compact metric space and f be a closed relation on
X whose domain is X. On the product space X% we will use the metric,
defined by Miller and Akin,

1

qtlie

(21) p(Xa Y) = Sup{min{d(xiv yz)a
for all x= (2;)icz, Y= (¥i)icz, with min{a, 3} = a by convention.

To show that XZ is metrizable, we first need the following Proposition
2.1:

PROPOSITION 2.1. Letx, y € X% and € > 0 be given. Then p(x, y) <
e if and only if d(z;, y;) < € for all i such that |i| < 1.

Proof. For given € > 0, suppose that p(x, y) < e for some x, y € XZ.
It is trivial that

. 1
d('an Z/O) = mln{d($07 y0)7 6} < p(Xa Y) < €,

for 1 = 0.
Let 0 < |i| < %, then & > e If d(z;, y;) > 7, then

[4] lil?

1 1
*} == 7
il il
1

we have a contradiction. Thus d(z;, y;) < i Hence

€ > p(x, y) > min{d(z;, yi), > €,

_ 1
d(z;, vi) = min{d(z;, v;), m} <p(x, y) <e

Suppose that d(z;, y;) < € for all |i| < 1, then
1

mln{d(wla y2)7
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Let |i| > 1. Since ﬁ <€, we have

Thus p(x, y) <e. O

PROPOSITION 2.2. p is a metric that induces the product topology
on X7,

Proof. First, we prove that p is a metric on X%. Let x,y,z € XZ.
p(x, y) > 0is trivial. If x =y, then p(x, y) = 0. If p(x, y) = 0 and
x £y, then there exists i € Z such that z; # y;. If i = 0, we have that

. 1
p(Xa Y) > mm{d(%y y0)7 6} - d(l’o, ?JO) > 0.

This is a contradiction. If ¢ # 0, we have
. 1
p(x, y) > min{d(z;, i), m} >0

because d(z;, y;) > 0 and ﬁ > 0. This is a contradiction. Therefore
x=y. p(x, y) = p(y, x) is clear. For i = 0, we have

. 1
min{d(zo, yo), 6} = d(zo, yo) < d(zo, 20) + d(z0, Yo)

= min{d(xo, 20p), %}—kmin{d(z:(), Y0), =}

< p(x, 2) +p(z, )
For 7 # 0, we have
1

M} <d(xi, yi) < d(zg, 2z) +d(z, yi)

mln{d(xla y2)7
1
d
< p(x, z) +p(z, y)
when d(z;, 2;) < 7, d(zi, yi) < g, and
. 1 1
min{d(z;, ¥i), m} < il

= min{d(v;, z), — }+min{d(z;, ),

= min{d(z;, %), \21|} or min{d(z;, v;), |21’}
(x, 2) or p(z, y)
(x, 2) + p(z, y)

VARVAN

X,
X,

p
p
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when d(x;, z) > |71‘ or d(z;, ;) > ﬁ

Hence p(x, v) < p(x, z) + p(z, y) for all x,y,z € X% Therefore p
is a metric on X%,

Let 3, be the topology induced by p and let S, be the product
topology on XZ.

To show that 3, = S, let U € S,. For all x € U, there exists an
e > 0 such that B,(x, €) C U. Since € > 0, we can choose a natural
number n such that % < n. Let V; = By(x;, §) for —n < i < n, and
V; = X for |[i| > n. Then V =[[2__ Vj is a basic neighborhood of x in
Sp. Iy € V, since d(x;, ;) < § for all 7 such that |i| < %, we obtain
p(x, y) < § < e by Proposition 2.1. Thus V' C B,(x, ¢) C U. This
means 3, C Ip.

Let U € S and x € U. By definition of the product topology, there
exists basic open set V = H;’i_oo Vi in Q) such that x €¢ V. C U. We
can find natural number n which V; = X for all |[i] > n. There exists
an € > 0 such that Bg(x;, €) C V; for all |i| < n. Choose § > 0 with
n < % and 0 < e. If p(x, y) < 0, then d(z;, y;) < § < e for all i such
that |i] < % by Proposition 2.1. This means y; € By(x;, €) € V; for all
lil <n. Thusy e [[2_ Vi=V CU. ie., By(x, §) CU. O

We denote by o the shift homeomorphismon X% and by my : X% — X
the projection on the 0-th coordinate.

PROPOSITION 2.3. Let x, y € X”. Then A
sup{d(zi, yi) | i € Z} =sup{p(c’(x), o'(y)) | i € Z}.

Proof. Let x, y € XZ. If x=y, then sup{d(z;, ) | i € Z} =
sup{p(o*(x), o*(y)) | i € Z} = 0.
Suppose that there is a p > 0 such that
sup{d(zi, i) | i € Z} < p < sup{p(o(x), o*(y)) | i € Z}.
Then there exists a j € Z such that
1
" il

p < p(07(x), 07(y)) = sup{min{d(o? (x)s, o/(y)), i} | i € Z}.
By the definition of the sup, there exists a k € Z such that

p<mmaﬂ@nwﬂwwwgy
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By the way,
p >sup{d(w;, vi) | i € Z} > d(xj1k, Yjrk)
= d(0? (x)k, o7 (y)k)
1

> min{d(o? (x)r, o/ (y)1), I

—

> Dp.
This is a contradiction. Thus ' ‘
sup{d(zi, i) | i € Z} > sup{p(c’(x), o*(y)) | i € Z}.
Suppose that there is a ¢ > 0 such that
sup{d(z:, 4i) | i € Z} > ¢ > sup{p(o’(x), o'(y)) | i € Z}.
Then there exists a j € Z such that d(z;, y;) > q.

q > sup {p(c"(x), o'(y)) | i € Z}
> p(o?(x), o7 (y))

> min{d(aj(X)O, Uj(Y)O)v %}

= d(0’(x)o, o’(y)o)
=d(zj, yj) > q.
This is a contradiction. Thus

sup{d(z;, i) | i € Z} < sup{p(o’(x), o'(y)) | i € Z}.
U

The sample path space for f is the subspace Xy of X Z defined by the
condition
X € Xf <~ (:Ui, :L‘i+1) € f
for all ¢ € Z.

PROPOSITION 2.4. Xy is a closed invariant subset of XZ,

Proof. Let x € Xy. Then there exists a sequence (x") in X such
that x" — x. For each i € Z, since (2}, z},,) € f and (27, z}, ;) —
(w4, wiv1), we have (z;, 2i41) € f = f. Thus x€ X¢. Hence X is closed
in X7. It is clear that X ¢ is invariant. O

The homeomorphism o on Xy is obtained by restricting the correspond-
ing shift. The restriction of the projection is denoted by my : Xy — X.
A relation f on X is called surjective if f(X) = X.
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For a closed subset A of X the restriction of f to A x A is
fa=fn(AxA).
The sample path space of fa is Ay = Xy N AZ,
THEOREM 2.5. Let f be a closed relation on X. Then
(2:2) mo(Xf) = N2 o f'(X).

Proof. Let x € Xy. Since mo(x) = ¢ € f(z—;) C fY(X) for all i € Z,
we have ‘
70(Xy) € N2 f(X).
Let € N%°_ _ f1(X). For each positive integer n, there exist z,,, x_,, €
X such that
x € fM(@—n) O f"(n).
Define z", = z_,, 2§ = =, 2! = z,. Since zj € f"(2",) and
xp € f(xy), there exist
mﬁn—l—l’ e vxﬁlafz?v T xZ—l eX
such that z} , € f(z}) for —n <4 < n. For each i € Z, the sequence
(77 )n>i| has a convergent subsequence. Let z} — x; as n — co. Since
(27, 2i1) € fand (27, 274 ,) — (75, Tip1) as n — oo,
we have (z;, wi41) € f = f. Thus x=(z;)icz € X¢and z =z €
mo(X7y).
This proves Theorem 2.5. 0
This set mo(Xf) = N2 _ f1(X), denoted by D(f), is called the dy-

1=—0Q
namic domain of f.

PROPOSITION 2.6. For a closed subset A of X the following conditions
are equivalent and when they hold A is called a surjective subset of X.

(1) fa is a surjective relation on A.

(2) A f(A)n f(A).

(3) mo(Ay) = A.

(4) There exists a og-invariant subset K of Xy such that mo(K) = A.

The dynamic domain of f is the maximum surjective subset of X,
that is, if A is a surjective subset of X then A C D(f). In particular, f
is surjective if and only if D(f) = X.

Proof. Clearly, if f is surjective then mo(X;) = X. In particular,
applied to fa we get (1) = (3). The implication (3) = (4) is obvious.
To prove (4) = (2) let z € A and choose x€ K such that xo = z. Since
x€ Xy, we have x = ¢ € f(z_1) N f~!(x1). By the invariance of K,
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a]?l(x), of(x) € K and so x_1 = 770(0';1(X)) and x1 = mo(of(x)) are in

mo(K) = A. Thus z € f(A) N f~1(A). If A C f(A) N f1(A) C f(A),

then
A=f(A)NA= fa(A).
This proves (2) = (1). O

REMARK. In general, if K is an o¢-invariant subset of X such that
mo(K) C A then K C Ay. That is, Ay is the maximum o p-invariant
subset of w5 1(A) in X;.

For any closed subset A of X
(2.3) D(fa) =mo(Ay) = NZ2_oo fa(A).

is the maximum surjective subset of A.

LEMMA 2.7. For closed subsets A and B of X the following conditions
are equivalent :

(1) D(fa) € D(f5)

(2) D(fa) c B

(3) As C iy N (B)

(4) Ay C By

Proof. Since D(fp) C B, (1)=(2) is clear. Since mo(Ay) C B if
and only if Ay C 75 (B), (2)=(3) is obvious. By is the maximum o -

invariant subset of 7, ' (B). Since A; is o s-invariant, (3) implies (4). By
definition of the dynamic domain of f, (4) implies ( ). O

Let f and g be closed relations on X and Y, respectively. A con-
tinuous map h : X — Y is said to map f to g, written h : f — g if
(z1, z2) € f implies (h(x1), h(x2)) € g. This condition is equivalent to
the following inclusion:

hof Cgoh

A continuous map h : X — Y is called a semiconjugacy from f
to g if his onto and ho f = go h. A conjugacy is a homeomorphism
h: X — Y such that h maps f to g and h~! maps ¢ to f, or equivalently
a homeomorphism h such that

hof=goh.
If h maps f to g, then the induced map h, : X% — Y7 defined by
hy(x); = h(z;) satisfies h.(Xy) C Yy,

THEOREM 2.8. Let f and g be closed relations on X and Y, respec-
tively ; let a continuous map h: X — Y map f tog ; and let A and B
be closed subsets of X and Y respectively.
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(1) If A is surjective with respect to f, then B = h(A) is surjective
with respect to g.

(2) If h is a conjugacy from f to g, then h.(Xy) =Y.

(3) If B is surjective with respect to g, A = h~'(B) and h is a semi-
conjugacy, then h(D(fa)) = B.

Proof. (1) For any y € B = h(A) there exists © € A such that
y = h(z). Since A is surjective, there exist z_j, 1 € A such that
(x_1, ), (x, z1) € f. We have

h(z_-1), h(z1) € h(A) =B
(h(5-1), h(z1)) = (h(z1), B)s (hlz1), hlz)) = (h(z1), y) € g.

Thus B is surjective.

(2) It is clear h.(Xy) C Y,. Let ye Y,. Since h is onto, there exists
x; € X such that h(x;) = y;. Since ye Yy, yiy1 € g(yi) = g(h(x;)) =
(ho f)(z;) and there exists z;+1 € f(x;) such that h(zit1) = yiy1. If
y€ Y, and n € Zy, then we can start at y_, and proceed inductively
forward to define 2} € X so that h(z}) = y; and (2}, z7,,) € f for
all i > —n. For each i € Z, the sequence (z}),>); has a convergent
subsequence. Let z}' — x; as n — oco. Then x= (x;) € Xy and h.(x) =y.
Thus Yy C hy(Xy). Hence h.(Xy) =Y.

(3) From (2) with A = h™Y(B) it follows that h.(Af) = B,. Now
apply mo : Xy — X. Because 7y o hy = h om and B is surjective,

HD(fa) = bmo(A7) = ol (A7) =m(By) = B.

A closed subset A of X is called isolated (rel a closed subset B of X)
with respect to f if there exists a v > 0 such that

(2.4) x € Xyand d(z;, A) <~ for all i € Z implies z; € B for all i € Z.
We call A isolated if A is isolated (rel A).

THEOREM 2.9. Let f be a closed relation on X and A, B closed
subsets of X.

(a) A is isolated (rel B) with respect to f if and only if there exists
a closed neighborhood U of A such that the following equivalent
conditions hold:

(1) D(fu) © D(f3)
2) D(fy) C B

(3) Uy C my ' (B)
(4) Uy C By

(b) The following conditions are equivalent :
(1) A is isolated (rel B) with respect to f.



296 Gui Seok Kim and Kyung Bok Lee

) A is isolated (rel D(fp)) with respect to f.

) D fA) is isolated (rel D(fB)) with respect to f.

) Ty H(A) is isolated (rel my ' (B)) with respect to ;.

) Af is isolated (rel By) with respect to oy.

(c) Assume g is a closed relation on Y and a continuous map h : Y —
X maps g to f. Let Ay = h™Y(A) and By = h™(B). If A is
isolated (rel B) with respect to f then A; is isolated (rel By) with
respect to g. Conversely, if Ay is isolated (rel By) with respect to
g and h is a semiconjugacy then A is isolated (rel B) with respect

to f.

Proof. (a) The equivalences are clear from Lemma 2.7. Condition
(2.4) is ture if and only if (4) holds with U = {z € X | d(z, A) <~}.

(b) (1) & (2) This follows from the equivalence of (1) with (2) in (a).

(2) = (3) If Aisisolated (rel B) then any closed subset of A is isolated
(rel B).

(3) = (1) Since D(fB) C B, D(fa) is isolated (rel B). By (a), there
exists a closed neighborhood G of D(f4) such that Gy C By. (2.3) and
compactness imply that

(2
(3
(4
(5

Mi=—nFA(4) € Int(G)

for some natural number N. Let U, = {z € X | d(z, A) < 1}. Then
(Uy) is a decreasing sequence of closed neighborhood of A with intersec-
tion A. Since the sequence (fy,) of closed relations decreases to fa, we
can find a closed neighborhood U = U, of A such that

(2.5) Mo N fH(U) C Int(G).
Let x€ Uy. By (2.5) we have x; € G for all © € Z. Thus xe€ Gy C By.
Hence we have Uy C By and so by (a) A is isolated (rel B).

Before completing the proof of (b) we prove (c).

If A is isolated (rel B), then Uy C By for some closed neighborhood
U of A. Let Uy = h=}(U). Then Uj is a closed neighborhood of A; =
h=1(A). If x€ (Ur)g, then hi(x) € hi(Y,) = Xy. Since hy(x); = h(z;) €
h(Uy) = h(h~Y(U)) C U for all i € Z, we have hy(x) € Uy C By. Thus
h(z;) = hi(x); € B implying x; € h™}(B) = By for all i € Z. Hence
x€ (B1)g 5o (U1)g C (Bi)g. Therefore A; is isolated (rel By).

Assume A; is isolated (rel By). Then (Uy)y C (B)g for some closed
neighborhood U; of A1 = h=1(A). By compactness, there exists a closed
neighborhood U of A such that h=}(U) C Uy. Let x€ Uy. Since hy(Y,) =
X, there exists y€ Y, such that h.(y)=x. We have h(y;) = h«(y); =
z; € U and so y; € h"}(U) C Uy for all i € Z. Thus ye (Uy)y C (B1),.
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Hence y; € By = h™Y(B) and h(y;) = z; € B for all i € Z, that is,
x€ By. Therefore Uy C By and so A is isolated (rel B).

Returning to (b), (1) < (4) The continuous map 7 : Xy — X maps
oy to f. Since mo.((Xy)o;) = Xy, the equivalence of (1) with (4) follows
from (c).

(4) & (5) Ay is the maximum o-invariant subset of m;'(A) an
similarly for By. Thus the equivalence of (4) with (5) is just (1) < (3
applied to oy.

f x fis a closed relation on X x X defined by

fx flzr, z2) = (f(21), f(x2)).

If A is a closed subset of X then A is surjective with respect to f if
and only if A x A is surjective with respect to f x f if and only if 14 is
surjective with respect to f x f.

A closed subset A of X is called expansive for f if 14 is isolated (rel
1x) with respect to f x f. That is, there exists a v > 0 (called expansive
constant for A) such that

(2.6)
X,y € Xy andmax(d(z;, A), d(yi, A), d(x;, y;)) <yforalliecZ

implies x = y.

o,

o=

f is called an expansive relation if X is expansive, that is, 1x is
isolated with respect to f x f.

THEOREM 2.10. Let h : X — Y be a semiconjugacy from a closed
relation f on X to the closed relation g on Y. Then g is an expansive
relation if and only if h~=' o h is an isolated subset of X x X.

Proof. We will prove that h™' o h = (h x h)"}(1y). Let (z, y) €
h~Yoh. Then there exists z € Y such that (z, 2) € h and (2, y) € A L.
Then (x, 2), (y, 2) € h and so h(z) = z = h(y). Since (h x h)(z, y) =
(h(x), h(y)) = (2, z), we have

(z, y) = (h x h) 7 (z, 2) € (h x B) " (1y).
Let (z, y) € (h x h)7!(1y). Then there exists (2, z) € 1y such that
(z, y) = (hx b)Yz, 2).

Since (z, z) = h x h(x, y) = (h(x), h(y)), we have (z, z), (y, z) € h.
Then
(z, 2) € hand (z, y) € h™L.
Thus (z, y) € h~ o h.
g is expansive if and only if 1y is isolated with respect to g x g. Since
h x h is a semiconjugacy from f x f to g x g, by Theorem 2.9(c), 1y is
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isolated for g x g if and only if (b x h)~!(1y) = h=! o h is isolated for
(hxh)™gxg)=fxf. O

Let v > 0. An element x of X7 is called a 7-chain for f if
d(xiy1, f(z;)) <~ forallieZ.
An element x of X? is said to y-shadow an element y of X7 if
d(z;, y;) <~ for all i € Z.

If A is a surjective closed subset of X then A satisfies the shadowing
property in X if for every € > 0 there exists a § > 0 such that any 4-
chain for f in A is e-shadowed by some O-chain in X. That is if x€ A%
with d(xit1, f(x;)) < 6 for all @ € Z, then there exists y€ Xy such that
d(x;, y;) < eforallieZ.

We will need a pair of technical lemmas.

LEMMA 2.11. Let A be a closed subset of X. For every € > ( there
exists a § > 0 such that every d-chain for f in V5(A) is §-shadowed by
some e-chain for f4.

Proof. In A x A, V% ofao V; is a neighborhood of the compact set
fa. Since

(V(s o f) N (V(;(A) X V(;(A)) — fa as o — 0,
there exists a § > 0 such that
(Vso f)N(Vs(A) x V§(A)) CVeofaoV

[SI1Y

%
If x€ V5(A)? is a §-chain, then

(w5, wiy1) € (Vso )N (Vs(A) x Vs(A)) for all i € Z.
and so there exists y; € A such that

d(x;, yi) < g and d(zit1, fa(y:)) < = for all i € Z.

| o

Thus

d(yiv1, fi)) < d(yiv1, ziv1) +d@iv, f(y) < 5+

DN

Hence y= (y;) € A” is an e-chain for f4 and S-shadows x. O



Hyperbolicity for closed relations 299

COROLLARY 2.12. Let f be a closed relation on X and A be a sur-
jective subset of X. A satisfies the shadowing property in X if and
only if for every € > 0 there exists a § > 0 such that any d-chain for
fa is e-shadowed by some O-chain for f in X. That is, if x € A% with
d(xiv1, f(x;) N A) <0 for all i € Z, then there exists y € Xy such that
d(x;, y;) <€ for all i € Z.

6_

Proof. Assume d1-chains for f4 are §-shadowed by 0-chains for f.
Use Lemma 2.11 with € replaced by min{§, 01} choose 6 > 0 so that
any d-chain for f in A can be §-shadowed by a d;-chain for f4. Thus
any é-chain for f in A is e-shadowed by some 0-chain for f.

The converse is obvious. O

Let f be a relation on X. f is said to be upper semicontinuous if
for any z € X and any € > 0 there exists 6 > 0 such that d(z,y) < ¢
implies f(y) C Ba(f(z),€). f is said to be lower semicontinuous if for
any ¢ € X and any € > 0 there exists § > 0 such that d(z,y) < § implies
f(z) € Ba(f(y),e). f is said to be continuous if f is upper and lower
semicontinuous.

PrROPOSITION 2.13. A closed relation f on X is upper semicontinu-
ous.

Proof. Assume that f is not upper semicontinuous. Then there exist
x € X and € > 0 such that for any 6 > 0 there exists y € By(z,0)
such that f(y) ¢ Ba(f(z),€). For each n, there exists z, € By(z, 1)
such that f(x,) ¢ Ba(f(x),e). We can choose y,, € f(z) — Bg(f(z),€).
Since X is compact, the sequence (y,) has a convergent subsequence.
Let y, — y as n — oo. Since (zn,yn) € f and (zp,yn) — (2,y) as
n — oo, we have (z,y) € f = f that is y € f(z). Since d(yn, f(7)) > €
for all n, we have d(y, f(x)) > e. This is a contradiction. Thus f is
upper semicontinuous. [

In the remainder of this paper, we assume that relations are lower
semicontinuous.

PROPOSITION 2.14. Let f be a lower semicontinuous closed surjective
relation on X. Given any integer n > 2 and any € > 0 there exists § > 0
such that if (y1,--- ,yn) is a d-chain for f then there exists x€ Xy such
that d(y;,x;) < e foralli=1,--- ,n.

Proof. Step 1. We will prove that for any ¢ > 0 there exists n > 0
such that if d(x,y) < n then f(z) C By(f(y),€) and f(y) C Ba(f(x),¢).
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Let € > 0. For each x € X there exists 7, > 0 such that if d(z,y) < 7,
then

J(@) € Balf(y),5) and (y) € Ba(f(), 5):

{Ba(z, )|z € X} is an open cover of X. Since X is compact, there
exist 21, , &, € X such that X = (J;_; By(w;, &) where n; = n,,. Put
TIn
5
Let z € X and d(z,y) < 7. There exists i such that x € By(x;, ). Since
g(ﬂ%l‘) <% <, we have f(2;) C Ba(f(z), 5) and f(z) C Ba(f(xi), 5)-

ince

2’ )

d(ws,y) < d(wi, o) +d(a,y) < T +n< T+ 2 =,

we have f(z;) C Ba(f(y),5) and f(y) C Ba(f(z:),5). Thus we have
f(@) € Ba(f(xi), 5) € Ba(f(y),€) and f(y) C Ba(f (@), 5) C Ba(f(y). ).

Step 2. We prove by induction on n. Assume that Proposition 2.14
holds for n. Given any € > 0, by Step 1, there exists 0 < 1 < € such

that if d(z,y) < n then
€ €
() € Balf(w), ) and £(y) © Ba(f(2), 5).
By induction hypothesis, there exists v > 0 such that if (yi, -+ ,yn) is
a 7y-chain for f then there exists a z € X such that d(y;, z;) < n for all
i=1,---,n. Put
d = min{~y, %}

Let (y1, -+ ,Yn+1) be a d-chain for f. Since (y1,--- ,yn) is a y-chain for
f, there exists a z € Xy such that d(y;, z;) <nforalli=1,--- ,n. Since

d(Yn, zn) < n, we have f(yn) C Ba(f(zn), %) and f(2n) C Ba(f(yn), %)
Since d(Yn+1, f(yn)) < 6 < §, there exists p € f(y,) such that d(yn41,p) <
5. Since p € f(yn) C Ba(f(zn),5), there exists ¢ € f(z,) such that
d(p,q) < 5. We have

€ €
d(Yn+1,9) < d(Ynt1,p) +d(p,q) < 5T5=¢

Define z; = z; for i < n, x,y1 = q, xiy1 € f(x;) for i > n+ 1. Then
X = (x;)icz € Xy and

d(yi,z;) <eforalli=1,--- ,n+1.
This completes the proof of Proposition 2.14. O

LEMMA 2.15. Let 0 < e < 1.
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(a) Assume (x');ez is an e-chain for oy that is x' € Xy and p(op( xY),
xitl) < e for alli € Z. Let y; = xi, = mo(x') for each i € Z, then
y = (¥i)iez € X” is an e-chain for f and p(ci(y), x*) < \/e for all
1 € Z.
(b) Assume f is surjective. There exists a 6 with 0 < 6 < € such that
ify € X% is a §-chain for f, then there exists an e-chain (x%);cz
for oy such that

(2.7) p(oi(y), x') < e for all i € Z.

Proof. (a) Since x' € Xy, 2} € f(z}) and so

(Y1, f(yi) < dazg™, @) = d(ap™, op(x)o) < p(x*!, op(x')) < e
Thus y is an e-chain for f.
Let |7 < . We have

= d(ay, b)

i+j—k—1 z+] k
< Zd s )
_ it+j—k—1 i+j—k
= Zd (op(x"™7 iy Ty, )
k

where the summation is over 0 < k < j if j > 0 and over j < k < 0 if
j < 0. Since (xi)lez is an e-chain for oy, p(op(xdTI7F71) xTI=k) < e
Since |k| < |j] < == e < L d(op(x k=1, xzﬂ_k) < € by Proposition
2.1. Thus d(o'(y ) j) S lile < /€. By Proposition 2.1, p(ci(y), x) <
Ve for all i € Z.

(b) Fix n > % By Proposition 2.14, there exists a § > 0 such that
for every d-chain y for f and i € Z there exists x* € Xy such that

(2.8) d(x}, yiyj) < 5 for |j| <n.

N

In particular for [j| < 1, we have

d(o(x);, x;ﬂ)

I
.

, -
(:B;'-‘rla l';--i— )
(T5115 Yitjr1) +d($§+17 Yitjr1)

+e
Z—¢
2

IN
a

IN
DO
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By Proposition 2.1, p(of(x%), x'™1) < e for all i € Z that is (x') is an
e-chain for oy. By (2.8)

i i G 1
(e}, o'(v);) < e for |j] < -
from which (2.7) follows from Proposition 2.1. O

THEOREM 2.16. Let f be a closed relation on X and A be a surjective
subset of X. A satisfies the shadowing property for f if and only if Ay
satisfies the shadowing property for o;.

Proof. Assume A satisfies the shadowing property for f. Given any
€€ (0, 1), let e = (5)? and let 6 € (0, €) be such that any d-chain for
fin A is €;-shadowed by some element of X¢. Let (x*) be a d-chain for
o in Ay. Define ye AZ by y; = x§. By Lemma 2.15(a), y is a é-chain
for f and

plai(y), x') < % for all i € Z.

By the choice of §, there exists z€ Xy such that d(y;, z;) < e < § for
all 2 € Z. Thus we have

p(o(2), o'(y)) < % for alli € Z.

By the triangle inequality, (0°(z)) is a chain in X which e-shadows

(x").

Assume Aj satisfies the shadowing property for oy. Given any € €
(0, 1], let €; = § and choose 0 € (0, €1) so that any d;-chain for oy in
Ay can be e;-shadowed by some 0-chain for oy. Since A is a surjective
subset of X, the closed relation f4 on A and € replaced by d;, choose
9 € (0, 61) satisfies the condition of the Lemma 2.15. Let y be a d-chain
for 0. By the choice of 4, there exists a di-chain (x') for o such that
x' € Ay and p(oi(y), x') < 4 for all i € Z. By the choice of 41, there

exists z€ X such that
p(a}(z), x') < ¢ for all i € Z.
Thus z is a 0-chain for f and
p(ajc(z), o'(y)) < 614 ¢€ < eforallicZ

Hence z e-shadows y. By Corollary 2.12, it follows that A satisfies
the shadowing property for f. O

A closed surjective subset A of X is called a hyperbolic subset for f
if it is an expansive subset which satisfies the shadowing property. This
says that there exists a v > 0 such that for every € with 0 < € < v there
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exists a § > 0 so that any d-chain for f in A is e-shadowed by a unique
0-chain for f in X.

f is called an Anosov relation if it is a surjective relation and X is
hyperbolic for f.

THEOREM 2.17. Let f be a closed relation on X and let A be a closed
surjective subset of X. The following conditions are equivalent and when
they hold we call A an Anosov subset.

(1) The restriction fa is an Anosov relation on A and A is an isolated
subset.

(2) The restriction f4 is an Anosov relation on A and A is an expansive
subset of X for f.

(3) A is an isolated hyperbolic subset of X.

Proof. (3) = (1) and (2). Let v > 0 satisfy (2.4) with B = A and
(2.6). Given € > 0, choose § > 0 so that any d-chain for f in A can be
min(e, y)-shadowed by a O-chain for f. Thus if x is a d-chain for fy,
then there exists ye X with

d(x;, y;) < min(e, v) for all i € Z.

By (2.4), it follows that y; € A for all i € Z and so ye Ay. Thus y is
a fa chain e-shadowing x. This implies that A satisfies the shadowing
property for f4. A is expansive for f4 with the same constant . Thus
fa is Anosov. A is isolated and expansive for f by assumption.

(1) and (2) = (3) By Corollary 2.12, A satisfies the shadowing prop-
erty when f4 is Anosov. By assumption, A is isolated and expansive for

(1) = (2) Let v > 0 satisfy (2.4) with B = A and (2.6) for fa. It
follows that (2.6) holds for f. That is, if x, y€ Xy and d(z;, A) < 7,
d(y;, A) <~ for all i € Z, then by (2.4), x;, y; € A for all i € Z. That
is, x, y€ Ay and so (2.6) for f4 implies x; = y; for all i € Z.

(2) = (1) Let v > 0 satisfy (2.6). Choose 0 < d; < 7 so that every
d1-chain for f4 can be J-shadowed by some f4 chain. By Lemma 2.11,
we can choose 0 < § < d&; so that any d-chain for f in Vs(A) can be
3-shadowed by a d;-chain for f4. Assume x€ X; with d(z;, A) < ¢ for
all i € Z. We prove x; € A for all i € Z which will imply A is isolated.

y

Since x is a f chain in V5(A)%, it is J-shadowed by some &;-chain y for

fa. Thus y is 3-shadowed by some f4 chain z. In particular, x, ye Xy
with d(z;, z;) <~y foralli € Z and z; € A for all i € Z. By (2.6) z; = z;

and so x; € A for all 7 € Z. O

THEOREM 2.18. Let f be a closed relation on X with the sample path
homeomorphism oy on Xy. Let A be a surjective subset of X. Each of
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the following properties holds for A with respect to f if and only if the
corresponding property holds for Ay with respect to oy.

(1) A is isolated.

(2) A is expansive.

(3) A satisfies the shadowing property.
(4) A is hyperbolic.

(5) A is Anosov.

Proof. For (1) we apply Theorem 2.9(b) with A = B. For (2) we
apply Theorem 2.9(b) to the relation f x f and the closed subset 14 and
Lx. Observe that (14)yxy = 1a,. For (3) apply Theorem 2.16. For (4)
use (2) and (3). For (5) use (1), (2) and (3), applying Theorem 2.17. [J

Now we describe some simple properties.

LEMMA 2.19. If A is a clopen subset of X, then A is isolated with
respect to f. If f is a clopen surjective relation on X, then f satisfies
the shadowing property.

Proof. Since A a is clopen subset of X, there exists a v > 0 such
that B(A, v) = A. Let x€ Xy and d(z;, A) < ~ for all i € Z. Since
x; € B(A, v) = Afor all i € Z, we have x€ Ay. Thus A is isolated with
respect to f. Since f is an open subset of X x X, for every (z, y) € f
there exists an e(z, y) > 0 such that

B(z, e(x, y)) x Bly, e(z, y)) C [.
Then {B(z, ie(z, y)) x B(y, 3€(z, v)) | (z, y) € f}is an open cover
of f. Since f is compact, there exist finitely many points (x1, y1),-- -,
(Tn, yn) € f such that

1 1
[ C UL, B(w, 561) X By, =€),

2

where €; = €(z;, y;) for all i. Let € = min{%ei |i=1,2,---,n}. To
prove that Vi o f = f, let (p, q) € V. o f. There exists r € X such
that (p, r) € f and (r, q) € V.. We can choose i so that (p, r) €
B(x;, %ez) x B(yi, %6,) Then d(p, z;) < %ei < €. Since d(r, y;) < %ei
and d(q, r) < e < 3¢;, we have

1 1
d(g, yi) < d(g, r) +d(r, i) < gei + e = e

Thus (p, q) € B(zi, €) x B(yi, €) C f and so V.o f C f. Since
f CVeof, we have V.o f = f. So any e-chain for f is a O-chain for f.
Hence f has the shadowing property. O
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COROLLARY 2.20. (a) If X is any compact metric space, then the
shift homeomorphism o on X% satisfies the shadowing property.
(b) If X is a finite set and f is any relation on X, then oy on Xy is
an Anosov homeomorphism.

Proof. (a) Since f = X x X is a clopen surjective relation on X,
by Lemma 2.19, f satisfies the shadowing property. By Theorem 2.18,
oy = o satisfies the shadowing property.

(b) We replace X by D(f) if necessary to assume that f is surjective.
Since X x X is a discrete space, f is a clopen surjective relation on X.
By Lemma 2.19 and Theorem 2.18, o satisfies the shadowing property.
Since 1x is a clopen subset of X x X, by Lemma 2.19, 1x is isolated
with respect to f x f and so f is expansive. By Theorem 2.18, o is
expansive. Thus o is an Anosov homeomorphism. O
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