JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 28, No. 2, May 2015 http://dx.doi.org/10.14403/jcms.2015.28.2.201

KUPKA-SMALE DIFFERENTIABLE MAPS

Manseob Lee*

ABSTRACT. We show that if a regular map belongs to the C^1 interior of the set of all Kupka-Smale differentiable maps then it satisfis Axiom A and the strong transverality condition.

1. Introduction

Let M be a closed C^{∞} manifold, and let Diff(M) be the space of diffeomorphisms of M endowed with the C^1 -topology. Denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle TM. Let $f \in \text{Diff}(M)$. We say that f is structurally stable if there is a C^1 -neighborhood \mathcal{U} of f such that for any $g \in \mathcal{U}$, there is a homeomorphism $h: M \to M$ such that $h \circ f(x) = g \circ h(x)$ for all $x \in M$. For $f \in \text{Diff}(M)$, we say that $f \in \mathcal{F}(M)$ if there is a C^1 neighborhood \mathcal{U} of f such that all periodic points of $g \in \mathcal{U}$ are hyperbolic. Then by Aoki [1] and Hayashi [3], we know that if $f \in \mathcal{F}(M)$ then fsatisfies Axiom A and no-cycle condition, that is, Ω -stable. An Axiom A diffeomorphism f satisfies the strong transversality condition if and only if the stable manifold $W^s(x)$ and the unstable manifold $W^u(x)$ are transversal for all $x \in M$. In [8], Robinson proved that a diffeomorphism f is structural stable if and only if it satisfies Axiom A and strong transversality condition.

Denote by $\mathcal{KS}(M)$ the C^1 -interior of the set of all Kupka-Smale diffeomorphsms. It is clear that $\mathcal{KS}(M) \subset \mathcal{F}(M)$. By Aoki [1], he proved that

Received November 11, 2014; Accepted January 30, 2015.

²⁰¹⁰ Mathematics Subject Classification: Primary 37D20; Secondary 37C75.

Key words and phrases: Kupka-Smale, Axiom A, strong transversality condition, structurally stable.

This work is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2014R1A1A1A05002124).

Manseob Lee

every $f \in \mathcal{KS}(M)$ satisfies Axiom A and the strong transversality condition. For that, we study that if for a regular map(a non-invertable differetiable map whose derivative is surjective) belongs to the C^1 -interior of the set of all Kupka-Smale regular maps then it satisfies Axiom A and the strong transversality condition.

2. Basic notions and main result

Let M be a closed C^{∞} manifold, and let d be a metric on M induced by a Riemannian metric $\|\cdot\|$ on the tangent bundle TM. A differentiable map $f: M \to M$ is called *regular* if the derivative $D_x f: T_x M \to T_{f(x)} M$ is surjective for any $x \in M$. Denote by $\mathfrak{R}(M)$ the set of all regular maps of M endowed with the C¹-topology. Let $f \in \mathfrak{R}(M)$. We denote by P(f)the set of all periodic points of f, and $\Omega(f)$ the set of all non-wandering points of f. We say that $p \in P(f)$ is hyperbolic if $D_p f^{\pi(p)} : T_p M \to T_p M$ has no eigenvalues of absolute value one, then $T_p M$ admits a continuous, invariant splitting $T_p M = E^s(p) \oplus E^u(p)$. Here the dimension of $E^s(p)$ is called the *index of* p, and denote by index(p). We say that f satisfies Axiom A if P(f) is dense in $\Omega(f)$ and $\Omega(f)$ is hyperbolic. If $D_x f$: $T_x M \to T_{f(x)} M$ is not injective then x is called a singular point for f. Mañé has proven in [5] that a differentiable map which is C^1 -structurally stable has no singular points. If f satisfies Axiom A and $\Omega(f)$ is the disjoint union $\Omega_1 \cup \Omega_2$ of two closed f-invariant sets such that (i) $f|_{\Omega_1}$ is injective, and (ii) Ω_2 is contained in the closure of all source periodic points then we say that f satisfies the strong Axiom A. If a differentiable map f satisfies Axiom A and has no singular points in the nonwandering set then f is Ω -stable if and only if f satisfies strong Axiom A and has no cycles (see [7]). In [2], Aoki *et. al* proved that if a differentiable map belongs to the C^1 -interior of the set of maps satisfying (i) periodic points are hyperbolic, and (ii) singular points in $\Omega(f)$ are sinks then it satisfies Axiom A and no-cycle condition.

Denote by \mathbb{M} the topological product space $\prod_{-\infty}^{\infty} M$, and define a continuous map $\bar{f} : \mathbb{M} \to \mathbb{M}$ by $\bar{f}((x_n)) = (f(x_n))$ for $(x_n) \in \mathbb{M}$. Then we define the projection $P^0 : \mathbb{M} \to M$ by $P^0((x_n)) = x_0$ satisfies $P^0 \circ \bar{f} = f \circ P^0$. For $\Lambda \subset M$, an \bar{f} -invariant set Λ_f is defined by $\Lambda_f = \{(x_n) \in \mathbb{M} : x_n \in \Lambda, f(x_n) = x_{n+1} \text{ for all } n \in \mathbb{Z}\}$. Then Λ_f is \bar{f} -invariant and $P^0(\Lambda_f)$ is f-invariant, that is, $f(P^0(\Lambda_f)) = P^0(\Lambda_f)$. A closed f-invariant set Λ is said to be hyperbolic if $D\bar{f}$ -invariant continuous splitting $T\mathbb{M}|_{\Lambda_f} =$

202

 $E^s \oplus E^u$ with constants C > 0 and $0 < \lambda < 1$ such that

$$||D\bar{f}^n|_{E^s}|| \le C\lambda^n$$
 and $||D\bar{f}^{-n}|_{E^u}|| \le C\lambda^n$

for $n \geq 0$.

For any $\epsilon > 0$ and $\bar{x} = (x_n) \in M_f$, we denote $W^s_{\epsilon}(\bar{x}) = \{y \in M : d(x_n, f^n(y)) \le \epsilon \text{ for } n \ge 0\}$, and $W^u_{\epsilon}(\bar{x}) = \{y \in M : \text{ there is } \bar{y} = (y_n) \in M_f \text{ such that } y_0 = y \text{ and } d(x_{-n}, y_{-n}) \le \epsilon \text{ for } n \ge 0\}$. Then $W^s_{\epsilon}(\bar{x})$ and $W^u_{\epsilon}(\bar{x})$ are called the *local stable set* and *local unstable set*, respectively. We defined by the *stable set* and the *unstable set* as follows:

$$W^{s}(\bar{x}) = \{y \in M : \lim_{n \to \infty} d(x_n, f^n(y)) = 0\}$$
 and

$$W^u(\bar{x}) = \{y \in M : \text{ there is } \bar{y} = (y_n) \in M_f$$

such that
$$y_0 = y$$
 and $\lim_{n \to \infty} d(x_{-n}, y_{-n}) = 0$ }

Let Λ be a hyperbolic set. For $\bar{x} \in \Lambda_f$, we define

$$W^{s}(\bar{x}) = \bigcup_{n=0}^{\infty} f^{-n} \left(W^{s}_{\epsilon}(\bar{f}^{n}(\bar{x})) \right) \text{ and}$$
$$W^{u}(\bar{x}) = \bigcup_{n=0}^{\infty} f^{n} \left(W^{u}_{\epsilon}(\bar{f}^{-n}(\bar{x})) \right).$$

Note that if $\bar{x} \in \Lambda_f$ and $\epsilon > 0$ is small enough then by [4, Theorem 5.1], $W^s_{\epsilon}(\bar{x}, f), W^u_{\epsilon}(\bar{x}, f)$ are disks or one point sets satisfy

$$T_{x_0}W^s_{\epsilon}(\bar{x}) = \bar{P}^0(E^s(\bar{x})) \text{ and } T_{x_0}W^u_{\epsilon}(\bar{x}) = \bar{P}^0(E^u(\bar{x}))$$

For $\bar{x}, \bar{y} \in M_f$, we say that $W^s(\bar{x})$ is transversal to $W^u(\bar{y})$ if $f^{n+m}|_{W^u_{\epsilon}(\bar{f}^{-m}(\bar{y}))}$ is transversal to $W^s_{\epsilon}(\bar{f}^n(\bar{x}))$ for any $\epsilon > 0$ and $n, m \ge 0$. For $f \in \mathfrak{R}(M)$, we say that f is Kupka-Samle if

- (a) for every periodic point of f is hyperbolic, and
- (b) for any (\bar{p}, \bar{q}) of periodic points for \bar{f} , $W^s(\bar{p})$ is transversal to $W^u(\bar{q})$.

By Shub [9, Theorem (β)], a Kupka-Smale differentiable map is residual. We denote by \mathcal{KS} the C^1 -interior of the set of all Kupka-Smale differentiable maps.

For any hyperbolic $p, q \in P(f)$, we say that $\operatorname{index}(p) = \operatorname{index}(q)$ if $W^s(\bar{p}) \pitchfork W^u(\bar{q}) \neq \emptyset$ and $W^u(\bar{p}) \pitchfork W^s(\bar{q}) \neq \emptyset$, where $P^0(\bar{p}) = p$ and $P^0(\bar{q}) = q$. In [9], Shub introduced the notion of the strong transversality condition for regular maps. Then we have

THEOREM 2.1. Let $f \in \mathfrak{R}(M)$. If $f \in \mathcal{KS}$ then f satisfies Axiom A and strong transversality condition.

Manseob Lee

To prove Theorem 2.1, we need the next lemma.

LEMMA 2.2. Let $\mathcal{U}(f)$ be a C^1 -neighborhood of f and let $p, q \in P(f)$ be hyperbolic points. If for any $g \in \mathcal{U}(f) \cap \mathcal{KS}$, $W^s(\bar{p}_g, g) \cap W^u(\bar{q}_g, g) \neq \emptyset$ then

$$\operatorname{index}(p) = \operatorname{index}(q),$$

where $p = P^0(\bar{p}), q = P^0(\bar{q})$ and \bar{p}_g, \bar{q}_g are the continuations of \bar{p}, \bar{q} , respectively.

Proof. Let $p, q \in P(f)$ be hyperbolic points such that $P^0(\bar{p}) = p$ and $P^0(\bar{q}) = q$. For simplify, we may assume that p and q are fixed points of f. Suppose, by contradiction, that $index(p) \neq index(q)$. If $p, q \in P(f)$ are saddles then we have

 $\dim W^s(\bar{p}) + \dim W^u(\bar{q}) < \dim M \text{ or } \dim W^u(\bar{p}) + \dim W^s(\bar{q}) < \dim M.$

Take a Kupka-Smale differentiable map $h \in \mathcal{U}(f)$. Then by assumption, we know

$$\dim W^s(\bar{p}_h, h) + \dim W^u(\bar{q}_h, h) < \dim M.$$

Thus $W^s(\bar{p}_h, h) \cap W^u(\bar{q}_h, h) = \emptyset$. Since $h \in \mathcal{U}(f) \cap \mathcal{KS}$, by the hypothesis, it should be $W^s(\bar{p}_h, h) \cap W^u(\bar{q}_h, h) \neq \emptyset$. This is a contradiction.

Note that Kupka-Smale differentiable maps contain the Mores-Samle differentiable maps, that is, $\Omega(f)$ is finite and f satisfies Axiom A and the strong traversality condition (see [6]). Then we can consider that the periodic point p is sink or source. In the proof we consider that p is a source. Then we suppose that $q(\neq p)$ is a saddle. Then there is $\epsilon > 0$ such that $W^s_{\epsilon}(\bar{p}) = \{p\}$ and $W^u_{\epsilon}(\bar{q})$ is a disc. Thus we know that

$$\dim W^s(\bar{p}) + \dim W^u(\bar{q}) < \dim M.$$

As in the previous arguments, we get a contradiction.

Proof of Theorem 2.1. Let $f \in \mathfrak{R}(M)$. Since $f \in \mathcal{KS}$, we know $f \in \mathcal{F}(M)$. Thus if $f \in \mathcal{KS}$ then f is Axiom A, and so, we have $M = W^s(\Omega(f)) = W^u(\Omega(f))$. To derive a contradiction, we may assume that f does not satisfy the strong transvesersality condition. Then there exist $p, q \in P(f)$ and $x \in M \setminus \Omega(f)$ such that $\bar{P}^0(\bar{x}) = x_0$, $P^0(\bar{p}) = p$, $P^0(\bar{q}) = q$ and

$$T_{x_0}W^s(\bar{p}) + T_{x_0}W^u(\bar{q}) \neq T_{x_0}M.$$

Since $f \in \mathcal{KS}$ by Lemma 2.2, it is impossible. Thus if $f \in \mathcal{KS}$ then f is structurally stable.

204

Kupka-Smale differentiable maps

References

- N. Aoki, The set of Axiom A diffeomorphisms with no cycles. Bol. Soc. Bras. Math. 23 (1992), 21-65.
- [2] N. Aoki, K. Moriyasu and N. Sumi, C¹-maps having hyperbolic periodic points, Fund. Math. 169 (2001), 1-49.
- [3] S. Hayashi, Diffeomorphisms in $\mathcal{F}^1(M)$ satisfy Axiom A, Ergodic Theory & Dynam. Syst. **12** (1992), 233-253.
- [4] M. Hirsh, C. Pugh and M. Shub, "Invariant manifolds.", Lecture Notes in Math. 583, Springer Verlag, Berlin, 1977.
- [5] R. Mañé, Axiom A for endoemorphisms, Lecture Notes in Math. 597, Springer, 1977, 397-388.
- [6] J. Palis, On Morse-Smale dynamical systems, Topology 8 (1969), 385-404.
- [7] F. Przytycki, On Ω-stability and structural stability of endomorphisms satisfying Axiom A, ibid. 60 (1977), 61-77.
- [8] C. Robinson, Structural stability of C¹-diffeomorphisms, J. Diff. Equat. 22 (1976), 28-73.
- M. Shub, Endormorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175-199.

*

Department of Mathematics Mokwon University Daejeon 302-729, Republic of Korea *E-mail*: lmsds@mokwon.ac.kr