DOI QR코드

DOI QR Code

멀티간섭기법에 기반한 이온왜곡 보정기법의 보완

Enhancement of Ionospheric Correction Method Based on Multiple Aperture Interferometry

  • 이원진 (서울시립대학교 공간정보공학과) ;
  • 정형섭 (서울시립대학교 공간정보공학과) ;
  • 채성호 (서울시립대학교 공간정보공학과) ;
  • 백원경 (서울시립대학교 공간정보공학과)
  • 투고 : 2015.03.26
  • 심사 : 2015.04.04
  • 발행 : 2015.04.30

초록

레이더 간섭도는 대기오차, 위성 궤도 오차, 처리 오차 등 다양한 오차를 포함하고 있다. 특히 이온층에 의한 위상 지연오차는 파장과 비례 관계에 있기 때문에 장파장을 사용하는 레이더 영상의 경우 이에 대한 오차 보정이 필수적으로 요구된다. 그에 관한 연구로 최근 멀티간섭기법(Multiple Aperture SAR Interferometry, MAI)에 기반된 레이더 간섭도 위상 오차 보정 기법이 개발되었다. 본 연구에서는 이 기법에 대한 소개와 간섭도 생성이 불가능한 지역에 대해서 방향 필터를 이용한 활용 방법을 제시했다. 또한 제시된 방법을 서해 연안 지역을 포함하는 ALOS PALSAR 간섭쌍에 대해 적용하였다. 우선, 기법 비교를 위해 일반적으로 궤도 오차 보정에 많이 사용되는 2차원 다항식 보정 기법을 이용하여 레이더 간섭도의 위상 오차 보정을 수행했다. 그 결과 비행방향을 따라 초기 레이더 간섭도와 같이 저주파 싸인 곡선 형태의 위상 패턴이 그대로 남아 있으며 이는 이온층에 의한 오차 보정이 제대로 수행되지 않았음을 의미한다. 이에 반해, 제시된 방법을 적용한 결과 간섭도 전체에서 특정 패턴이 없어졌으며 비행방향을 따라 ${\pm}1rad$ 내의 안정된 위상 값을 유지하며 이온층에 의한 레이더 간섭도의 위상 왜곡 보정 적용이 잘 되었다. 제안된 방법은 효과적으로 이온층에 의한 위상 오차를 보정함으로써 L- 혹은 P-밴드 시스템의 레이더 간섭도 정확성과 활용성을 높일 수 있는 중요 기술이 될 것이다.

Synthetic Aperture Radar Interferometry (InSAR) is affected by various noise source such as atmospheric artifact, orbital error, processing noise etc.. Especially, one of the dominant noise source for long-wave SAR system, such as ALOS PALSAR (L-band SAR satellite) is the ionosphere effect because phase delays on radar pulse through the ionosphere are proportional to the radar wavelength. To avoid misinterpret of phase signal in the interferogram, it is necessary to detect and correct ionospheric errors. Recently, a MAI (Multipler Aperture SAR Interferometry) based ionospheric correction method has been proposed and considered one of the effective method to reduce phase errors by ionospheric effect. In this paper, we introduce the MAI-based method for ionospheric correction. Moreover we propose an efficient method that apply the method over non-coherent area using directional filter. Finally, we apply the proposed method to the ALOS PALSAR pairs, which include the west sea coast region in Korea. A polynomial fitting method, which is frequently adopted in InSAR processing, has been applied for the mitigation of phase distortion by the orbital error. However, the interferogram still has low frequency of Sin pattern along the azimuth direction. In contrast, after we applied the proposed method for ionospheric correction, the low frequency pattern is mitigated and the profile results has stable phase variation values within ${\pm}1rad$. Our results show that this method provides a promising way to correct orbital and ionospheric artifact and would be important technique to improve the accuracy and the availability for L-band or P-band systems.

키워드

참고문헌

  1. Bamler, R. and Eineder, M., 2005. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems, IEEE Geoscience and Remote Sensing Letters, 2(2): 151-155. https://doi.org/10.1109/LGRS.2004.843203
  2. Baek, J., Kim,S.-W., Park, H.-J., Jung, H.-S., Kim, K.-D., and Kim, J.-W., 2008. Analysis of ground subsidence in coal mining area using SAR interferometry, Geosciences Journal, v.12(3): pp.277-284. https://doi.org/10.1007/s12303-008-0028-3
  3. Ding,X.-L., Li,Z.-W., Zhu,J.-J., Feng, G.-C. and Long, J.-P., 2008. Atmospheric effects on InSAR measurements and their mitigation, Sensors, 8(9): 5426-5448. https://doi.org/10.3390/s8095426
  4. Jung, H.-S., J.-S. Won and S.-W. Kim, 2009. An improvement of the performance of multiple aperture SAR interferometry (MAI), IEEE Transactions on Geoscience and Remote Sensing, 47:2859-2869. https://doi.org/10.1109/TGRS.2009.2016554
  5. Jung, H-.S., Lu, Z., Won, J.-S., Poland, M. and Miklius, A., 2011a. Mapping three-dimensional surface deformation by combining multiple aperture interferometry and conventional interferometry: application to the June 2007 eruption of Kilauea Volcano, Hawaii: IEEE Geoscience and Remote Sensing Letters, 8(1): 34-38, doi:10.1109/LGRS.2010.2051793.
  6. Jung, H.-S., Lu, Z., 2011b. Topographic phase correction of MAI (Multipler Aperture SAR Interferometry) Interferogram, Korean Journal of Remote Sensing, 26(2):171-180.
  7. Jung, H.-S., Lee, D.-T., Lu, Z., and Won, J.-S., 2013a. Ionospheric Correction of SAR Interferograms by Multiple-Aperture Interferometry, IEEE Transactions on Geoscience and Remote Sensing, 51(5): 3191-3199. https://doi.org/10.1109/TGRS.2012.2218660
  8. Jung, H.-S., Lu, Z. and Zhang L., 2013b. Feasibility of along-track displacement measurement from Sentinel-1 interferometric wide-swath mode, IEEE Transactions on Geoscience and Remote Sensing, 51(1) : 573-578. https://doi.org/10.1109/TGRS.2012.2197861
  9. Jung, H.-S., W.-J., Lee, and Zhang, L., 2014. Theoretical Accuracy of Along-Track Displacement Measurements from Multiple-Aperture Interferometry (MAI), Sensors, v.14(9): 17703-17724. https://doi.org/10.3390/s140917703
  10. Jung, H.-S. and W.-J., Lee, 2015. An Improvement of Ionospheric Phase Correction by Multiple-Aperture Interferometry, IEEE Transactions on Geoscience and Remote Sensing, in press.
  11. Kim, S.-W., S. Wdowinski, T., H. Dixon, F. Amelung, J.-W. Kim, J.-S. Won, 2010. Measurements and predictions of subsidence induced by soil consolidation using persistent scatterer InSAR and a hyperbolic model, Geophysical research letters, v.37, doi:10.1029/2009GL041644.
  12. Liu, Z., H.-S., Jung, and Z. Lu, 2014. Joint correction of ionosphere noise and orbital error in L-band SAR interferometry of interseismic deformation in southern California, IEEE Transactions on Geoscience and Remote Sensing, 52(6): 3421-3427. https://doi.org/10.1109/TGRS.2013.2272791
  13. Meyer, F., Bamler, R., Jakowski, N., and Fritz, T., 2006. The potential of low-frequency SAR systems for mapping ionospheric TEC distributions, IEEE Geoscience and Remote Sensing Letters, 3(4): 560-564. https://doi.org/10.1109/LGRS.2006.882148
  14. Meyer, F. and Nicoll, J.B., 2008. Prediction, detection, and correction of Faraday rotation in fullpolarimetric L-band SAR data, IEEE Transactions on Geoscience and Remote Sensing, 46(10): 3076-3086. https://doi.org/10.1109/TGRS.2008.2003002
  15. Meyer, F., 2011. Performance requirements for ionospheric correction of lowfrequency SAR data, IEEE Transactions on Geoscience and Remote Sensing, 49(10): 3694-3702. https://doi.org/10.1109/TGRS.2011.2146786
  16. Raucoules, D. and Michele, M. 2010. Assessing ionospheric influence on L-band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake, IEEE Geoscience and Remote Sensing Letters, 7(2): 286-290. https://doi.org/10.1109/LGRS.2009.2033317
  17. Rosen, P.A., Hensley, S., and Peltzer., G., 2004. Updated repeat orbit interferometry package released, EOS Transactions American Geophysical Union, 85(5): 2143-5156.
  18. Wegmuler U., Werner C., Strozzi T., Wiesmann A., 2006. Ionospheric electron concentration effects on SAR and INSAR. In: Proceedings of international geoscience and remote sensing symposium, Denver, USA, 31: 3714-3717.

피인용 문헌

  1. Did the 12 September 2016 Gyeongju, South Korea earthquake cause surface deformation? pp.1598-7477, 2017, https://doi.org/10.1007/s12303-017-0050-4
  2. TerraSAR-X 위성레이더 오프셋 트래킹 기법을 활용한 스발바르 Uvêrsbreen 빙하의 2차원 속도 vol.34, pp.3, 2015, https://doi.org/10.7780/kjrs.2018.34.3.5
  3. Satellite radar observation of large surface collapses induced by the 2017 North Korea nuclear test vol.10, pp.1, 2015, https://doi.org/10.1038/s41598-020-74957-2