DOI QR코드

DOI QR Code

Effect of Duck's Feet Derived Collagen Sponge on Skin Regeneration: In Vitro Study

오리발 유래 콜라겐 스펀지의 피부재생 효과: In vitro 연구

  • Cha, Se Rom (Dept. of BIN Fusion Tech. & Dept. of polymerNano Sci. Tech., Chonbuk National University) ;
  • Jeong, Hyun Ki (Dept. of BIN Fusion Tech. & Dept. of polymerNano Sci. Tech., Chonbuk National University) ;
  • Kim, Su Young (Dept. of BIN Fusion Tech. & Dept. of polymerNano Sci. Tech., Chonbuk National University) ;
  • Kim, Eun Young (Dept. of BIN Fusion Tech. & Dept. of polymerNano Sci. Tech., Chonbuk National University) ;
  • Song, Jeong Eun (Dept. of BIN Fusion Tech. & Dept. of polymerNano Sci. Tech., Chonbuk National University) ;
  • Park, Chan Hum (Dept. of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University) ;
  • Kwon, Soon Yong (Dept. of Orthepedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Khang, Gilson (Dept. of BIN Fusion Tech. & Dept. of polymerNano Sci. Tech., Chonbuk National University)
  • 차세롬 (전북대학교 BIN융합공학과, 고분자나노공학과, 고분자융합소재연구소) ;
  • 정현기 (전북대학교 BIN융합공학과, 고분자나노공학과, 고분자융합소재연구소) ;
  • 김수영 (전북대학교 BIN융합공학과, 고분자나노공학과, 고분자융합소재연구소) ;
  • 김은영 (전북대학교 BIN융합공학과, 고분자나노공학과, 고분자융합소재연구소) ;
  • 송정은 (전북대학교 BIN융합공학과, 고분자나노공학과, 고분자융합소재연구소) ;
  • 박찬흠 (한림대학교 의과대학 춘천성심병원 이비인후과) ;
  • 권순용 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 강길선 (전북대학교 BIN융합공학과, 고분자나노공학과, 고분자융합소재연구소)
  • Received : 2014.11.26
  • Accepted : 2014.12.09
  • Published : 2015.05.25

Abstract

For biomaterials for skin regeneration with minimized inflammatory response, high bioactivity and biocompatibility are highly required. Also, it should have a porous microstructure to improve cell adhesion and growth. In this study, we extracted a new collagen source from duck's feet which is by-product, and made the shape of sponges from duck's feet collagen (DC) to compare with DBP and SIS. To analyze physical and chemical property of the scaffold, SEM and FTIR were used. MTT assay was used to measure the attachment and proliferation of NIH/3T3 in the scaffolds. RTPCR was used to evaluate the expression of proinflammatory cytokine. Also, 1,1-diphenyl-2-picrylhydrazyl (DPPH) was used to measure the ability of antioxidant activity. Overall, this study shows that DC scaffold is biocompatible and has good physical property. Additionally, DC scaffold shows the potential as wound healing biomaterials.

피부재생을 위한 생체재료는 염증반응이 최소화되는 안정한 소재로 빠른 피부재생을 돕기 위해 우수한 생체활성과 생체친화성을 가져야 하며, 세포의 부착과 성장을 돕는 미세구조와 다공성이 있어야 한다. 본 연구에서는 새로운 콜라겐 원으로서의 축산부산물인 오리발을 사용하여 콜라겐을 추출하였고 이를 탈미네랄화된 골분demineralized bone powder, DBP), 돼지 소장점막하 조직(small intestinal submucosa, SIS)과 비교하기 위해 스펀지 형태로 제작하였다. 지지체의 물리, 화학적 특징은 SEM, FTIR을 통해 확인하였다. 세포를 파종하여 MTT를 통해 세포의 부착 및 증식률을 측정하였고, 전염증성 사이토카인의 발현도를 보기 위해 RT-PCR을 실시하였다. 또한 항산화 활성능력을 보기 위해 1,1-diphenyl-2-picrylhydrazyl(DPPH)를 측정하였다. 그 결과 오리발 콜라겐 지지체가 물리적 특성이 우수하고 생체적합성이며, 상처 치유제로서의 가능성을 보여주었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. W. Friess, Eur. J. Pharm. Biopharm., 45, 113 (1998). https://doi.org/10.1016/S0939-6411(98)00017-4
  2. K. W. Ng, Inter. J. Tissue Regen., 4, 29 (2013).
  3. S. J. Hollister, Nat. Mater., 4, 518 (2005). https://doi.org/10.1038/nmat1421
  4. A. Leal-Egana and T. Scheibel, Biotechnol. Appl. Biochem., 55, 155 (2010). https://doi.org/10.1042/BA20090229
  5. A. D. Metcalfe and M. W. Ferguson, J. R. Soc. Interface, 4, 413 (2007). https://doi.org/10.1098/rsif.2006.0179
  6. O. J. Lee, J. M. Lee, H. J. Jin, and C. H. Park, Inter. J. Tissue Regen., 1, 68 (2010).
  7. Q. Ye, K. Ohsaki, K. Li, D. J. Li, C. S. Zhu, T. Ogawa, S. Tenshin, and T. Takano-Yamanoto, Auris Nasus Larynx, 28, 131 (2001). https://doi.org/10.1016/S0385-8146(00)00079-1
  8. C. Liu, Z. Xia, and J. T. Czernuszka, Chem. Eng. Res. Des., 85, 1051 (2007). https://doi.org/10.1205/cherd06196
  9. A. J. Singer and R. A. Clark, N. Engl. J. Med., 341, 738 (1999). https://doi.org/10.1056/NEJM199909023411006
  10. S. R. Caliari, M. A. Ramirez, and B. A. C. Harely, Biomaterials, 32, 8990 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.035
  11. A. Aszodi, K. R. Legate, I. Nakchbandi, and R. Fassler, Annu. Rev. Biol., 22, 591 (2006). https://doi.org/10.1146/annurev.cellbio.22.010305.104258
  12. J. E. Song, R. Kim, J. H. Lee, H. M. Kim, C. M. Kim, D. Lee, and G. Khang, Inter. J. Tissue Regen., 4, 17 (2013).
  13. J. Brinckmann, Top. Curr. Chem., 247, 1 (2005).
  14. R. M. Boehler, S. Shin, A. G. Fast, R. M. Gower, and L. D. Shea, Biomaterials, 34, 5431 (2013). https://doi.org/10.1016/j.biomaterials.2013.04.009
  15. G. R. Grotendorst, H. E. Seppa, H. K. Kleinman, and G. R. Martin, Proc. Natl. Acad. Sci., 78, 3669 (1981). https://doi.org/10.1073/pnas.78.6.3669
  16. J. A. Ramshaw, J. A. Werkmeister, and V. Glattauer, Biotechnol. Genet. Eng. Rev., 13, 335 (1996). https://doi.org/10.1080/02648725.1996.10647934
  17. B. Chevallay and D. Herbage, Med. Biol. Eng. Comput., 38, 211 (2000). https://doi.org/10.1007/BF02344779
  18. H. M. Powell, D. M. Supp, and S. T. Boyce, Biomaterials, 29, 834 (2008). https://doi.org/10.1016/j.biomaterials.2007.10.036
  19. R. M. Capito and M. Spector, Gene Therapy, 14, 721 (2007). https://doi.org/10.1038/sj.gt.3302918
  20. J. C. Murray, G. Stingl, H. K. Kleinman, G. R. Martin, and S. I. Katz, J. Cell Biol., 80, 197 (1979). https://doi.org/10.1083/jcb.80.1.197
  21. E. J. Chong, T. T. Phan, I. J. Lim, Y. Z. Zhang, B. H. Bay, S. Ramakrishna, and C. T. Lim, Acta Biomater., 3, 321 (2007). https://doi.org/10.1016/j.actbio.2007.01.002
  22. R. F. Oliver, H. Barker, A. Cooke, and R. A. Grant, Biomaterials, 3, 38 (1982). https://doi.org/10.1016/0142-9612(82)90059-X
  23. S. E. Lynch, R. B. Colvin, and H. N. Antoniades, J. Clin. Invest., 84, 640 (1989). https://doi.org/10.1172/JCI114210
  24. B. P. Kropp, B. L. Eppley, C. D. Prevel, M. K. Rippy, R. C. Harruff, S. F. Badylak, M. C. Adams, R. C. Rink, and M. A. Keating, Urology, 46, 396 (1995). https://doi.org/10.1016/S0090-4295(99)80227-1
  25. S. Mizuno and J. Glowacki, Biomaterials, 17, 1819 (1996). https://doi.org/10.1016/0142-9612(96)00041-5
  26. N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, and A. Domard, Biomaterials, 28, 3478 (2007). https://doi.org/10.1016/j.biomaterials.2007.04.021
  27. J. H. Yeo, K. G. Lee, H. C. Kim, H. Y. L. Oh, A. J. Kim, and S. Y. Kim, Biol. Pharm. Bull., 23, 1220 (2000). https://doi.org/10.1248/bpb.23.1220
  28. D. H. Roh, S. Y. Kang, J. Y. Kim, Y. B. Kwon, H. Y. Kweon, K. G. Lee, Y. H. Park, R. M. Baek, C. Y. Heo, and J. Choe, J. Mater. Sci. Mater. Med., 17, 547 (2006). https://doi.org/10.1007/s10856-006-8938-y
  29. H. A. Ko, H. M. Kim, H. J. Ha, R. Kim, J. E. Jang, K. H. Kim, J. H. Lee, J. S. Song, H. Yoon, O. J. Lee, D. Lee, C. H. Park, and G. Khang, Inter. J. Tissue Regen., 3, 103 (2012).
  30. B. P. Kropp, B. L. Eppley, C. D. Prevel, M. K. Rippy, R. C. Harruff, S. F. Badylak, and M. A. Keating, Urology, 43, 396 (1995).
  31. K. S. Park, C. M. Jin, S. J. Yun, K. D. Hong, S. H. Kim, M. S. Kim, J. M. Rhee, G. Khang, and H. B. Lee, Polym. Korea, 29, 501 (2005).
  32. S. H. Kim, J. E. Song, D. Lee, and G. Khang, J. Tissue Eng. Regen. Med., 8, 279 (2014). https://doi.org/10.1002/term.1520
  33. C. R. Shim, Y. J. Lee, H. A. Ko, M. J. Kim, J. W. Bae, J. H. Lee, J. E. Song, and G. Khang, Inter. J. Tissue Regen., 3, 50 (2012).
  34. L. L. Fernandes, C. X. Resende, D. S. Tavares, G. A. Soares, L. O. Castro, and J. M. Granjeiro, Polimeros, 21, 1 (2011).
  35. P. Molyneux, Songklanakarin J. Sci. Technol., 26, 211 (2004).

Cited by

  1. Skin regeneration using duck’s feet derived collagen and poly(vinyl alcohol) scaffold vol.24, pp.4, 2016, https://doi.org/10.1007/s13233-016-4051-3
  2. Novel transparent collagen film patch derived from duck’s feet for tympanic membrane perforation pp.1568-5624, 2017, https://doi.org/10.1080/09205063.2017.1374031
  3. Inflammatory response study of gellan gum impregnated duck’s feet derived collagen sponges vol.27, pp.15, 2015, https://doi.org/10.1080/09205063.2016.1213218