DOI QR코드

DOI QR Code

Effect of Imidazole and Surfactant on the Opto-Electrical Properties of PEDOT Thin Films via Vapor Phase Polymerization

이미다졸과 계면활성제가 기상중합법으로 제조된 PEDOT 박막의 광-전기적 특성에 미치는 영향

  • Khadka, Roshan (Division of Advanced Material Engineering, Kongju National University) ;
  • Yim, Jin-Heong (Division of Advanced Material Engineering, Kongju National University)
  • 카드카 로산 (공주대학교 천안공과대학 신소재공학부) ;
  • 임진형 (공주대학교 천안공과대학 신소재공학부)
  • Received : 2014.09.30
  • Accepted : 2014.11.19
  • Published : 2015.05.25

Abstract

This paper reports the combined effects of the triblock copolymer surfactant poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) and imidazole on the opto-electrical and mechanical properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based thin films prepared via vapor phase polymerization (VPP) using ferric p-toluenesulfonate as a catalyst. Various PEDOT-based thin films were synthesized using PEG-PPG-PEG and imidazole alone and in combination to compare and correlate their effects on film properties. The improved conductivity of the PEDOT films was higher than $1300S{\cdot}cm^{-1}$ when the surfactant and imidazole were used together. The PEG-PPG-PEG chain length was also varied to identify the best conditions for the VPP-based preparation of PEDOT thin films.

본 논문은 ferric p-toluenesulfonate를 산화제에 약 염기인 이미다졸과 poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) 계면활성제를 동시 첨가하여 기상중합법으로 제조된 poly(3,4-ethylenedioxythiophene) (PEDOT) 박막의 광-전기적 특성 향상에 대한 것이다. 여러 가지 조건에서 제조된 PEDOT 박막 특성과 산화제의 첨가제로 사용된 약 염기와 계면활성제의 조합 효과의 상관관계를 규명하고자 하였다. 이미다졸과 PEG-PPG-PEG로 구성된 첨가제를 사용하여 제조된 PEDOT 박막은 $1300S{\cdot}cm^{-1}$ 이상의 전도성을 가졌다. PEG-PPG-PEG계 계면활성제의 분자량이 기상 중합을 이용한 PEDOT 박막의 특성에 미치는 영향도 조사하였다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc., Chem. Commun., 474, 578 (1977).
  2. C. Chiang, C. Fincher, Y. Park, A. J. Heeger, H. Shirakawa, and E. Louis, Phys. Rev. Lett., 39, 1098 (1977). https://doi.org/10.1103/PhysRevLett.39.1098
  3. D. Kumar and R. C. Sharma, Eur. Polym. J., 34, 1053 (1998). https://doi.org/10.1016/S0014-3057(97)00204-8
  4. A. Moliton and R. C. Hirons, Polym. Int., 53, 1397 (2004). https://doi.org/10.1002/pi.1587
  5. Y. Z. Long, M. M. Li, C. Gu, M. Wan, J. L. Duvail, Z. Liu, and Z. Fan, Prog. Polym. Sci., 36, 1415 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.001
  6. M. Gerard, A. Chaubey, and B. D. Malhotra, Biosens. Bioelectron., 17, 345 (2002). https://doi.org/10.1016/S0956-5663(01)00312-8
  7. P. A. Levermore, L. Chen, X. Wang, R. Das, and D. D. C. Bradley, Adv. Mater., 19, 2379 (2007). https://doi.org/10.1002/adma.200700614
  8. D. M. Welsh, A. Kumar, E. W. Meijer, and J. R. Reynolds, Adv. Mater., 11, 1379 (1999). https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1379::AID-ADMA1379>3.0.CO;2-Q
  9. K. S. Lee, J. H. Yun, Y. H. Han, J. H. Yim, N. G. Park, K. Y. Cho, and J. H. Park, J. Mater. Chem., 21, 15193 (2011). https://doi.org/10.1039/c1jm13408f
  10. J. Zaumseil, K. W. Baldwin, and J. A. Rogers, J. Appl. Phys., 93, 6117 (2003). https://doi.org/10.1063/1.1568157
  11. J. E. ten Elshof, S. U. Khan, and O. F. Gobel, J. Eur. Ceram. Soc., 30, 1555 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.01.016
  12. S. R. Dupont, E. Voroshazi, P. Heremans, and R. H. Dauskardt, Org. Electron., 14, 1262 (2013). https://doi.org/10.1016/j.orgel.2013.02.022
  13. L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., 12, 481 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  14. R. Kiefer, D. G. Weis, J. Travas-Sejdic, G. Urban, and J. Heinze, Sens. Actuators, B, 123, 379 (2007). https://doi.org/10.1016/j.snb.2006.08.039
  15. Y. H. Ha, N. Nikolov, S. K. Pollack, J. Mastrangelo, B. D. Martin, and R. Shashidhar, Adv. Funct. Mater., 14, 615, (2004).
  16. Y. Li, D. Wang, X. Pei, Z. Shi, L. Wang, W. Zhang, and J. Jin, Soft Matter, 7, 2682 (2011). https://doi.org/10.1039/c0sm00982b
  17. J. Kim, E. Kim, Y. Won, H. Lee, and K. Suh, Synth. Met., 139, 485 (2003). https://doi.org/10.1016/S0379-6779(03)00202-9
  18. B. Winther-Jensen, D. W. Breiby, and K. West, Synth. Met., 152, 1 (2005). https://doi.org/10.1016/j.synthmet.2005.07.085
  19. J. P. Lock, S. G. Im, and K. K. Gleason, Macromolecules, 39, 5326 (2006). https://doi.org/10.1021/ma060113o
  20. D. Bhattacharyya, R. M. Howden, D. C. Borrelli, and K. K. Gleason, J. Polym. Sci., Part B: Polym. Phys., 50, 1329 (2012). https://doi.org/10.1002/polb.23138
  21. A. T. Lawal and G. G. Wallace, Talanta, 119, 133 (2014). https://doi.org/10.1016/j.talanta.2013.10.023
  22. B. Winther-Jensen, J. Chen, K. West, and G. Wallace, Macromolecules, 37, 5930 (2004). https://doi.org/10.1021/ma049365k
  23. T. Y. Kim, C. M. Park, J. E. Kim, and K. S. Suh, Synth. Met., 149, 169 (2005). https://doi.org/10.1016/j.synthmet.2004.12.011
  24. M. A. Ali, H. Kim, C. Lee, H. Nam, and J. Lee, Synth. Met., 161, 1347 (2011). https://doi.org/10.1016/j.synthmet.2011.04.036
  25. B. Winther-Jensen and K. West, Macromolecules, 37, 4538 (2004). https://doi.org/10.1021/ma049864l
  26. J. S. Choi, K. Y. Cho, and J. H. Yim, Eur. Polym. J., 46, 389 (2010). https://doi.org/10.1016/j.eurpolymj.2009.11.010
  27. M. Fabretto, K. Zuber, C. Hall, and P. Murphy, Macromol. Rapid Commun., 29, 140 (2008).
  28. K. Zuber, M. Fabretto, C. Hall, and P. Murphy, Macromol. Rapid Commun., 29, 1503 (2008). https://doi.org/10.1002/marc.200800325
  29. M. Fabretto, M. Muller, K. Zuber, and P. Murphy, Macromol. Rapid Commun., 30, 1846 (2009). https://doi.org/10.1002/marc.200900371
  30. M. Mueller, M. Fabretto, D. Evans, P. Hojati-Talemi, C. Gruber, and P. Murphy, Polymer, 53, 2146 (2012). https://doi.org/10.1016/j.polymer.2012.03.028
  31. M. Fabretto, C. Jariego-Moncunill, J. P. Autere, A. Michelmore, R. D. Short, and P. Murphy, Polymer, 52, 1725 (2011). https://doi.org/10.1016/j.polymer.2011.02.028
  32. P. Hojati-Talemi, C. Bachler, M. Fabretto, P. Murphy, and D. Evans, ACS Appl. Mater. Interfaces, 5, 11654 (2013). https://doi.org/10.1021/am403135p

Cited by

  1. Influence of base inhibitor and surfactant on the electrical and physicochemical properties of PEDOT-SiO2 hybrid conductive films vol.23, pp.6, 2015, https://doi.org/10.1007/s13233-015-3079-0