DOI QR코드

DOI QR Code

Influence of Screw Rotors Tip Angle on Mixing Performance for One Novel Twin-screw Kneader

2축 스크류 니더의 설계에서 스크류 로터 팁의 각도가 믹싱성능에 미치는 영향

  • Wei, Jing (The State Key Laboratory on Mechanical Transmission, Chongqing University) ;
  • Chen, Dabing (School of Mechanical Engineering, Dalian University of Technology) ;
  • Zhou, Dongming (School of Mechanical Engineering, Dalian University of Technology) ;
  • Zhang, Aiqiang (School of Mechanical Engineering, Dalian University of Technology) ;
  • Yang, Yuliang (School of Mechanical Engineering, Dalian University of Technology)
  • Received : 2014.09.09
  • Accepted : 2014.10.31
  • Published : 2015.05.25

Abstract

Twin-screw kneader is an efficient polymer processing equipment. In this paper, the mixing performance of one novel intermeshing counter-rotating twin-screw kneader with different tip angles of the male rotor is simulated using the mesh superimposition technique (MST). Statistical analysis is carried out for the flow field using particle tracking technique, and distributive mixing performance is evaluated using the residence time distribution and segregation scale, while the dispersive mixing performance is estimated using the parameters such as shear rate, stretching rate and mixing index. The results show that the best distributive mixing performance is achieved when the tip angle is 0o, while the optimal dispersive mixing performance is obtained when the tip angle is 20o. The results in this paper provide a data basis for the selection of parameters and optimization of the performance for the screw rotors.

Keywords

References

  1. G. Bohme and O. Wunsch, Arch. Appl. Mech., 67, 167 (1997). https://doi.org/10.1007/s004190050109
  2. S. S. Hong, J. H. Shin, K. B. Song, and K. H. Lee, Polym. Korea, 37, 342 (2013). https://doi.org/10.7317/pk.2013.37.3.342
  3. K. Shon, S. H. Bumm, and J. L. White, Polym. Eng. Sci., 48, 756 (2008). https://doi.org/10.1002/pen.20941
  4. T. Ishikawa, T. Amano, S. I. Kihara, and K. Funatsu, Polym. Eng. Sci., 42, 925 (2002). https://doi.org/10.1002/pen.11002
  5. H. Potente, K. Kretschmer, J. Hofmann, M. Senge, M. Mours, G. Scheel, and Th. Winkelmann, Int. Polym. Proc., 16, 341 (2001). https://doi.org/10.3139/217.1664
  6. D. Djuric and P. Kleinebudde, J. Pharm. Sci., 97, 4934 (2008). https://doi.org/10.1002/jps.21339
  7. T. Brouwer, D. B. Todd, and L. Janssen, Int. Polym. Proc., 17, 26 (2002). https://doi.org/10.3139/217.1678
  8. J. Wei, L. Guo, and G. H. Zhang, J. Reinf. Plast. Compos., 29, 2279 (2010). https://doi.org/10.1177/0731684409348345
  9. J. Wei, Q. Sun, X. Sun, and W. Sun, Int. J. Precis. Eng. Man., 14, 451 (2013). https://doi.org/10.1007/s12541-013-0061-7
  10. J. Wei, G. H. Zhang, Q. Zhang, J. S. Kim, and S. K. Lyu, Int. J. Precis. Eng. Man., 9, 59 (2008).
  11. M. L. Rathod and J. L. Kokini, J. Food Eng., 118 256 (2013). https://doi.org/10.1016/j.jfoodeng.2013.04.020
  12. M. H. Kang, H. Y. Yeom, H. Y. Na, and S. J. Lee, Polym. Korea, 37, 526 (2013). https://doi.org/10.7317/pk.2013.37.4.526
  13. T. Ishikawa, S. I. Kihara, and K. Funatsu, Polym. Eng. Sci., 40, 357 (2000). https://doi.org/10.1002/pen.11169
  14. T. Ishikawa, F. Nagano, T. Kajiwara, and K. Funatsu, Int. Polym. Proc., 21, 354 (2006). https://doi.org/10.3139/217.0088
  15. M. A. Emin and H. P. Schuchmann, J. Food Eng., 115, 132 (2013). https://doi.org/10.1016/j.jfoodeng.2012.10.008
  16. T. Avalosse, Y. Rubin, and L. Fondin, J. Reinf. Plast. Compos., 21, 419 (2002). https://doi.org/10.1177/0731684402021005442
  17. B. Alsteens, V. Legat, and T. Avalosse, Int. Polym. Proc., 19, 207 (2004). https://doi.org/10.3139/217.1836
  18. J. Wei, X. L. Liang, D. B. Chen, Y. L. Yang, and D. M. Zhou, Polym. Eng. Sci., 54, 2407 (2014). https://doi.org/10.1002/pen.23786
  19. M. L. Booy, Polym. Eng. Sci., 20, 1220 (1980). https://doi.org/10.1002/pen.760201808
  20. T. Kajiwara, Y. Nagashima, Y. Nakano, and K. Funatsu, Polym. Eng. Sci., 36, 2142 (1996). https://doi.org/10.1002/pen.10611
  21. G. O. Aloku and X. F. Yuan, Chem. Eng. Sci., 65, 3749 (2010). https://doi.org/10.1016/j.ces.2010.03.022
  22. H. Cheng and I. Manas-Zloczower, Polym. Eng. Sci., 38, 926 (1998). https://doi.org/10.1002/pen.10260
  23. A. Kumar, G. M. Ganjyal, D. D. Jones, and M. A. Hanna, J. Food Eng., 84, 441 (2008). https://doi.org/10.1016/j.jfoodeng.2007.06.017
  24. R. K. Connelly and J. L. Kokini, J. Food Eng., 79, 956 (2007). https://doi.org/10.1016/j.jfoodeng.2006.03.017
  25. J. J. Cheng and I. Manas-Zloczower, Int. Polym. Proc., 5, 178 (1990). https://doi.org/10.3139/217.900178
  26. B. J. Bentley and L. G. Leal, J. Fluid Mech., 167, 241 (1986). https://doi.org/10.1017/S0022112086002811