DOI QR코드

DOI QR Code

Synthesis and Solution Properties of Fluorinated Amphiphilic Polyacrylamide

불화계 양친매성 폴리아크릴아마이드의 합성과 용액거동

  • Zhao, Fangyuan (College of Materials Science and Engineering, Beijing University of Chemical Technology) ;
  • Du, Kai (SINOPEC Beijing Research Institute of Chemical Industry) ;
  • Yi, Zhuo (SINOPEC Beijing Research Institute of Chemical Industry) ;
  • Du, Chao (SINOPEC Beijing Research Institute of Chemical Industry) ;
  • Fang, Zhao (SINOPEC Beijing Research Institute of Chemical Industry) ;
  • Mao, Bingquan (College of Materials Science and Engineering, Beijing University of Chemical Technology)
  • Received : 2014.08.07
  • Accepted : 2014.10.01
  • Published : 2015.05.25

Abstract

A series of hydrophobically associating fluorinated amphiphilic polyacrylamide copolymers with remarkably high heat resistance and salt tolerance were synthesized by free radical micellar copolymerization, using acrylamide (AM) and sodium 2-acrylamido-tetradecane sulfonate ($AMC_{14}S$) as amphiphilic monomers, and 2-(perfluorooctyl) ethyl acrylate (PFHEA) as hydrophobic monomer. The structure of the terpolymer was characterized by FTIR, $^1H$ NMR and $^{19}F$ NMR. The solution properties of the terpolymers were investigated in details, and the results showed that the terpolymer solution had strong intermolecular hydrophobic association as the concentration exceeded the critical association concentration 1.5 g/L. The terpolymer solution possessed high surface activity, viscoelasticity, excellent heat resistance, salt tolerance and shearing resistance. The viscosity retention rate of copolymer solution was as high as 59.9% under the condition of fresh wastewater, $85^{\circ}C$ and a 60-days aging test.

Keywords

References

  1. S. E. Morgan and C. L. McCormick, Prog. Polym. Sci., 15, 103 (1990). https://doi.org/10.1016/0079-6700(90)90017-U
  2. D. A. Z. Wever, F. Picchioni, and A. A. Broekhuis, Prog. Polym. Sci., 36, 1558 (2011). https://doi.org/10.1016/j.progpolymsci.2011.05.006
  3. J. P. Yang, H. S. Li, and P. C. Huang, Acta Polym. Sin., 5, 601 (1977).
  4. V. S. Molchanov, O. E. Philippova, and A. Khokhlov, Langmiur, 23, 105 (2007). https://doi.org/10.1021/la061612l
  5. S. Panmai, R. K. Prudhomme, and D. G. Peiffer, Langmiur, 18, 3860 (2002). https://doi.org/10.1021/la020165g
  6. K. T. Wang, I. Iliopoulos, and R. Audebert, Polym. Bull., 20, 577 (1988).
  7. K. Busse and J. Kressler, Macromolecules, 35, 178 (2002). https://doi.org/10.1021/ma0116809
  8. C. L. McCormick, M. C. Kramer, Y. Chang, K. D. Branham, and E. L. Kathmann, Polym. Prep., 34, 1005 (1993).
  9. G. Bastiat, B. Grassl, and J. Francois, Polym. Int., 51, 958 (2002). https://doi.org/10.1002/pi.1049
  10. M. Summers, J. Eastoe, S. Davis, and Z. Du, Langmuir, 17, 5388 (2001). https://doi.org/10.1021/la010541h
  11. H. Wu, S. Kawaguchi, and K. Ito, Colloid Polym. Sci., 282, 1365 (2004). https://doi.org/10.1007/s00396-004-1056-9
  12. M. Summers and J. Eastoe, Adv. Colloid Interface Sci., 100-102, 137 (2003). https://doi.org/10.1016/S0001-8686(02)00058-1
  13. T. Hirai, T. Watanable, and I. Komasawa, J. Phys. Chem. B, 104, 8962 (2000). https://doi.org/10.1021/jp001364g
  14. J. F. A. Soltero, J. G. Alvarez-Ramirez, V. V. A. Fernandez, N. Tepale, F. Bautista, E. R. Macias,, J. H. Perez-Lopez, P. C. Schulz, O. Manero, C. Solans, and J. E. Puig, J. Colloid Interface Sci., 312, 130 (2007). https://doi.org/10.1016/j.jcis.2006.08.001
  15. R. Bordes, K. Rbii, P. A. Gonzalez, M. S. Franceschi, E. Perez, and L. I. Rico, Langmuir, 23, 7526 (2007). https://doi.org/10.1021/la700521p
  16. G. Q. Jiang, J. Macromol. Sci., Part A: Pure. Appl. Chem., 51, 165 (2014). https://doi.org/10.1080/10601325.2014.864929
  17. J. R. G. Bistline, A. J. Stirton, J. K. Weil, and W. S. Port, J. Am. Oil Chem. Soc., 33, 44 (1956). https://doi.org/10.1007/BF02638351
  18. B. J. Gao, H. P. Guo, J. Wang, and Y. Zhang, Macromolecules, 41, 2890 (2008). https://doi.org/10.1021/ma701967b
  19. Y. M. Yu, B. J. Gao, and R. X. Wang, Chin. J. Colloid Polym., 23, 26 (2005).
  20. K. F. Luo and L. Ye, Polym. Mater. Sci. Eng., 15, 145 (1999).
  21. B. J. Gao, N. Wu, and Y. B. Li, J. Appl. Polym. Sci., 96, 714 (2005). https://doi.org/10.1002/app.21505
  22. K. C. Taylor and H. A. Nasr-El-Din, J. Petrol. Sci. Eng., 19, 265 (1998). https://doi.org/10.1016/S0920-4105(97)00048-X
  23. H. Yamamoto and Y. Morishima, Macromolecules, 32, 7469 (1999). https://doi.org/10.1021/ma9907791
  24. S. C. Sharma, D. P. Acharya, M. Garcia-Roman, Y. Itami, and H. Kunieda, Colloids Surfaces A, 280, 140 (2006). https://doi.org/10.1016/j.colsurfa.2006.01.047
  25. M. C. Kramer, J. R. Steger, Y. Hu, and C. L. McCormick, Macromolecules, 29, 1992 (1996). https://doi.org/10.1021/ma951087p
  26. K. M. Johnson, M. J. Fevola, and C. L. McCormick, J. Appl. Polym. Sci., 92, 647 (2004). https://doi.org/10.1002/app.13646
  27. S. W. Provencher, Biophys. J., 16, 27 (1976). https://doi.org/10.1016/S0006-3495(76)85660-3
  28. H. F. Jing, D. M. Wang, and H. F. Xia, J. Daqing Pet. Inst., 32, 61 (2008).
  29. H. F. Xia, D. M. Wang, Q. J. Guan, and Y. K. Liu, J. Daqing Pet. Inst., 26, 105 (2002).
  30. C. L. McCormick, T. Nonaka, and C. B. Johnson, Polymer, 29, 731 (1988). https://doi.org/10.1016/0032-3861(88)90092-4
  31. J. T. Ma, P. Cui, L. Zhao, and R. H. Huang, Eur. Polym. J., 38, 1627 (2002). https://doi.org/10.1016/S0014-3057(02)00034-4