DOI QR코드

DOI QR Code

Studies on Depletion Layer of Probe Particles in the System of Poly(vinyl acetate)/Dimethyl Sulfoxide by Dynamic Light Scattering

폴리(비닐 아세테이트)/디메틸설폭사이드 계에서 동적 광산란법에 의한 탐침입자의 배제층 연구

  • Jeon, Guk Jin (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Jang, Jinho (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Park, Il Hyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 전국진 (금오공과대학교 고분자공학과) ;
  • 장진호 (금오공과대학교 소재디자인공학과) ;
  • 박일현 (금오공과대학교 고분자공학과)
  • Received : 2014.06.20
  • Accepted : 2014.10.01
  • Published : 2015.05.25

Abstract

In the system of poly(vinyl alcohol) (PVA)/dimethyl sulfoxide, the refractive index of polymer was very well matched to that of solvent and thus its scattered intensity could be minimized. After adding small amount of polystyrene latex particle (nominal diameter 200 nm), diffusion behavior of only probe particle was investigated against the concentration of polymer matrix by means of dynamic light scattering. The polymer concentration dependence of its reduced diffusion coefficient was able to be analysed with the stretched exponential function of the reduced concentration $C[{\eta}]$. In very dilute concentration regime, the depletion layer kept constant but at the early semi-dilute regime of $1{\leq}C[{\eta}]{\leq}2.5$, the concentration-dependent exponent of depletion layer ${\delta}$ was appeared to be -0.8 which was very close to theoretical one of -0.85. However it was also observed at the higher concentration that its layer thickness decreased more abruptly than theoretical expectation and this phenomenon was ascribed to Oosawa type attractive interaction between adjacent latex particles.

고분자와 용매의 굴절률이 서로 일치되어 자체 산란광의 세기가 극소화된 시스템인 폴리(비닐 아세테이트) (PVAc)/디메틸설폭사이드(DMSO) 계에 폴리스티렌 라텍스 탐침입자(표시 직경 200 nm)를 소량 첨가한 뒤 동적 광산란법으로 용액의 PVAc 농도에 대한 입자의 확산 거동을 정밀하게 조사하였다. 구형 입자의 환산확산계수의 농도의존성은 환산농도 $C[{\eta}]$의 신장지수함수로 분석할 수 있었고, 묽은 농도에서는 배제층의 두께가 일정하게 유지되었으나 초기 준희박 농도인 $1{\leq}C[{\eta}]{\leq}2.5$ 범위에서는 배제층의 사슬농도 의존지수가 -0.8로써 이론적 계산치 -0.85와 일치하였다. 그러나 보다 높은 농도에서는 배제층의 두께가 이론적 예측보다 급속히 감소하는 현상 또한 관찰되었으며, 그 원인은 인접한 탐침 입자들 사이에 존재하는 Oosawa 인력 때문인 것으로 설명할 수 있었다.

Keywords

Acknowledgement

Grant : 저에너지형 CPB(Cold Pad Batch) 상온염색 시스템 개발

References

  1. D. Napper, Polymeric Stabilization of Colloidal Dispersion, Academic Press, London, 1983.
  2. A. S. Verkman, Trends Biochem. Sci., 27, 27 (2002). https://doi.org/10.1016/S0968-0004(01)02003-5
  3. R. Varogui and P. Dejardin, J. Chem Phys., 66, 439 (1977).
  4. T. M. H. M. Sheutjens and G. J. Fleer, J. Phys. Chem., 84, 178 (1980). https://doi.org/10.1021/j100439a011
  5. M. Stuart, F. Waajen, T. Cosgrove, B. Vincent, and T. Crowley, Macromolecules, 17, 1825 (1984). https://doi.org/10.1021/ma00139a035
  6. K. Vaynberg, N. J. Wagner, R. Sharma, and P. Martic, J. Colloid Interface Sci., 205, 131 (1998). https://doi.org/10.1006/jcis.1998.5640
  7. Y.-W. Choi, S. Lee, K. Kim, P. S. Russo, and D. Sohn, J. Colloid Interface Sci., 313, 469 (2007). https://doi.org/10.1016/j.jcis.2007.05.021
  8. Y.-W. Choi, K. Kim, J. Y. Kim, Y. Lee, and D. Sohn, Colloids Surf. A, 315, 7 (2008). https://doi.org/10.1016/j.colsurfa.2007.07.002
  9. E. Donath, A. Krabi, M. Nirschl, V. M. Shilov, M. I. Zharkikh, and B. Vincent, J. Chem. Soc., Faraday Trans., 93, 115 (1997). https://doi.org/10.1039/a603103j
  10. C. W. Hoogendam, J. C. W. Peters, R. Tuinier, A. de Keizer, M. A. Cohen Stuart, and B. H. Bijsterbosch, J. Colloid Interface Sci., 207, 309 (1998). https://doi.org/10.1006/jcis.1998.5762
  11. S. Asakura and F. Oosawa, J. Chem. Phys., 22, 1255 (1954).
  12. S. Asakura and F. Oosawa, J. Polym. Sci., 33, 183 (1958). https://doi.org/10.1002/pol.1958.1203312618
  13. A. Vrij, Pure Appl. Chem., 48, 471 (1976).
  14. G. J. Fleer, A. M. Skvortsov, and R. Tuinier, Macromolecules, 36, 7857 (2003). https://doi.org/10.1021/ma0345145
  15. J. Hu, R. Wang, and G. Xue, J. Phys. Chem., 110, 1872 (2006). https://doi.org/10.1021/jp056024f
  16. A. M. Zhickov, J. Colloid Interface Sci., 313, 122 (2007). https://doi.org/10.1016/j.jcis.2007.03.064
  17. G. J. Fleer, A. M. Skvortsov, and R. Tuinier, Macromol. Theory Simul., 16, 531 (2007). https://doi.org/10.1002/mats.200700022
  18. T.-H. Fan, K. G. Dhont, and R. Tuinier, Phys. Rev. E, 75, 11803 (2007). https://doi.org/10.1103/PhysRevE.75.011803
  19. H. S. Eom and I. H. Park, Polym. Korea, 36, 628 (2012). https://doi.org/10.7317/pk.2012.36.5.628
  20. E. Donath, A. Krabi, G. Allen, and B. Vincent, Langmuir, 12, 3425 (1996). https://doi.org/10.1021/la9510238
  21. B. Vincent, Colloids Surf., 50, 241 (1990). https://doi.org/10.1016/0166-6622(90)80267-8
  22. L. T. Lee, O. Guiselin, A. Lapp, B. Farnoux, and J. Penfold, Phys. Rev. Lett., 67, 2838 (1991). https://doi.org/10.1103/PhysRevLett.67.2838
  23. H. Bumler, B. Neu, S. Iovtchev, A. Budde, H. Kiesewetter, R. Latza, and E. Donath, Colloids Surf. A, 149, 389 (1999). https://doi.org/10.1016/S0927-7757(98)00401-4
  24. W. W. Graessley, Polymeric Liquids & Network: Structure and Properties, Garland Science, New York, 2004.
  25. M. G. Huglin, Light Scattering from Polymer Solutions, Academic, New York, 1972.
  26. W. Brown, Dynamic Light Scattering: The Method and some Application, Clarendon, Oxford, 1993.
  27. K. Kamide, Thermodynamics of Polymer Solutions: Phase Equilibria and Critical Phenomena, Elsevier Science, Amsterdam, 1990.
  28. D. Britton, F. Heatley and P. A. Lovell, Macromolecules, 31, 2828 (1998). https://doi.org/10.1021/ma971284j
  29. W. M. Kulicke and R. Keniewske, Rheol. Acta, 23, 75 (1984). https://doi.org/10.1007/BF01333878
  30. A. Ren, P. E. Ellis, S. B. Ross-Murphy, Q. Wang, and P. J. Wood, Carbohydr. Polym., 53, 401 (2003). https://doi.org/10.1016/S0144-8617(03)00117-6
  31. K. A. Streletzky and G. D. J. Phillies, Macromolecules, 32, 145 (1999). https://doi.org/10.1021/ma981156a
  32. G. D. J. Phillies, Macromolecules, 21, 3101 (1988). https://doi.org/10.1021/ma00188a031
  33. K. L. Ngai and G. D. Phillies, J. Chem. Phys., 105, 8385 (1996). https://doi.org/10.1063/1.472693
  34. C. N. Onyenemezu, D. Gold, M. Roman, and W. G. Miller, Macromolecules, 26, 3833 (1993). https://doi.org/10.1021/ma00067a018
  35. D. Gold, C. N. Onyenemezu, and W. G. Miller, Macromolecules, 29 5700 (1996). https://doi.org/10.1021/ma951822x
  36. O. Glatter and O. Kratky, Small Angle X-ray Scattering, Academic Press, New York, 1982.
  37. J. Brandrup, E. H. Immergut, and E. A. Grulke, Editors, Polymer Handbook, 4th ed., John Wiley&Sons, New York, 1999.