DOI QR코드

DOI QR Code

Synthesis and Characterization of pH-sensitive and Self-oscillating IPN Hydrogel in a pH Oscillator

pH 진동계 안에서 pH 감응성 자기진동 IPN 하이드로젤의 합성과 분석

  • Wang, Liping (Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemtry & Environmental Analysis of Gansu) ;
  • Ren, Jie (Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemtry & Environmental Analysis of Gansu) ;
  • Zhang, Xiaoyan (Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemtry & Environmental Analysis of Gansu) ;
  • Yang, Xiaoci (Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemtry & Environmental Analysis of Gansu) ;
  • Yang, Wu (Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Bioelectrochemtry & Environmental Analysis of Gansu)
  • Received : 2014.03.14
  • Accepted : 2014.12.06
  • Published : 2015.05.25

Abstract

A self-oscillating interpenetrating polymer network (IPN) poly(acrylic acid)/poly(ethylene glycol) (PAA/PEG) hydrogel was prepared by using radical polymerization with a two-step method. The IPN hydrogel was characterized by FTIR spectroscopy and morphological analysis. The results indicated that the chains of PEG and PAA twined to form porous structure which is beneficial to water molecules entering inside of the hydrogel. In addition, the pH-responsive behavior, salt sensitivity, swelling/de-swelling oscillatory behaviors and self-oscillation in a closed pH oscillator were also studied. The results showed that the prepared hydrogel exhibited pH-sensitivity, good swelling/de-swelling reversibility and excellent salt sensitivity. The self-oscillating behavior of swelling/de-swelling for the prepared hydrogel was caused by pH alteration coupled with the external media. This study may create a new possibility as biomaterial including new self-walking actuators and other related devices.

Keywords

References

  1. M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, Nat. Mater., 9, 101 (2010). https://doi.org/10.1038/nmat2614
  2. I. Tokarev, V. Gopishetty, J. Zhou, M. Pita, M. Motornov, E. Katz, and S. Minko, Appl. Mater., 3, 532 (2009).
  3. J. Wang, D. D. N. Sun, Y. Shin-ya, and K. W. Leong, Macromolecules, 37, 670 (2004). https://doi.org/10.1021/ma035453d
  4. V. Alzari, O. Monticelli, D. Nuvoli, J. M. Kenny, and A. Mariani, Biomacromolecules, 10, 2672 (2009). https://doi.org/10.1021/bm900605y
  5. N. Rapoport, Prog. Polym. Sci., 32, 962 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.009
  6. M. Motornov, Y. Roiter, I. Tokarev, and S. Minko, Prog. Polym. Sci., 35, 174 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.004
  7. Y. X. Zhang, F. P. Wu, M. Z. Li, and E. J. Wang, Polymer, 46, 7695 (2005). https://doi.org/10.1016/j.polymer.2005.05.121
  8. S. Zhao, M. Cao, H. Li, L. Li, and W. Xu, Carbohydr. Res., 345, 425 (2010). https://doi.org/10.1016/j.carres.2009.11.014
  9. M. M. Liu, H. J. Su, and T. W. Tan, Carbohydr. Polym., 87, 2425 (2012). https://doi.org/10.1016/j.carbpol.2011.11.010
  10. S. J. Kim, S. G. Yoon, Y. M. Lee, and S. I. Kim, Sens. Actuators, B, 88, 286 (2003). https://doi.org/10.1016/S0925-4005(02)00371-4
  11. R. Yoshida, T. Takahashi, T. Yamaguchi, and H. Ichijo, J. Am. Chem. Soc., 118, 5134 (1996). https://doi.org/10.1021/ja9602511
  12. H. Taniguchi, D. Suzuki, and R. Yoshida, J. Phys. Chem. B, 114, 2405 (2010). https://doi.org/10.1021/jp911779j
  13. L. Gyorgyi, T. Turanyi, and R. J. Field, J. Phys. Chem., 94, 7162 (1990). https://doi.org/10.1021/j100381a039
  14. R. J. Field and R. M. Noyes, J. Am. Chem. Soc., 96, 2001 (1974). https://doi.org/10.1021/ja00814a003
  15. C. Bilici, S. Karayel, T. T. Demir, and O. Okay, J. Appl. Polym. Sci., 118, 2981 (2010). https://doi.org/10.1002/app.32693
  16. R. Yoshida, Adv. Mater., 22, 3463 (2010). https://doi.org/10.1002/adma.200904075
  17. Y. Murase, M. Hidaka, and R. Yoshida, Sens. Actuators, B, 149, 272 (2010). https://doi.org/10.1016/j.snb.2010.06.017
  18. Y. Murase, S. Maeda, S. Hashimoto, and R. Yoshida, Langmuir, 25, 483 (2009). https://doi.org/10.1021/la8029006
  19. R. Yoshida and Y. Uesusuki, Biomacromolecules, 6, 2923 (2005). https://doi.org/10.1021/bm050398x
  20. J. Zhang and N. A. Peppas, Macromolecules, 33, 102 (2000). https://doi.org/10.1021/ma991398q
  21. E. C. Edblom, Y. Luo, M. Orban, K. Kustin, and I. R. Epstein, J. Phys. Chem., 93, 2122 (1989).
  22. N. Okazaki, G. Rabai, and I. Hanazaki, J. Phys. Chem. A, 103, 10915 (1999). https://doi.org/10.1021/jp992626l
  23. Y. Dogu and O. Okay, J. Appl. Polym. Sci., 99, 37 (2006). https://doi.org/10.1002/app.22140
  24. M. N. Tamashiro, Y. Levin, and M. C. Barbosa, Eur. Phys. J., B1, 337 (1998).
  25. B. L. Gou and Q. Y. Gao, Carbohydr. Res., 342, 2416 (2007). https://doi.org/10.1016/j.carres.2007.07.007

Cited by

  1. Experimental Evidence of Large Amplitude pH Mediated Autonomous Chemomechanical Oscillation vol.9, pp.11, 2017, https://doi.org/10.3390/polym9110554