논리연구 18-1(2015) pp. 65-82

Set-theoretical Kripke-style semantics for three-valued paraconsistent logic*

Eunsuk Yang

[Abstract] This paper deals with non-algebraic Kripke-style semantics for three-valued paraconsistent logic: set-theoretical Kripke-style semantics. We first recall two three-valued paraconsistent systems. We next introduce set-theoretical Kripke-style semantics for them.

[Key Words] (Set-theoretical) Kripke-style semantics, algebraic semantics, three-valued logic, paraconsistent logic.

접수일자: 2014.10.14 심사 및 수정완료일: 2014.11.25 게재확정일: 2015.01.12

^{*} This paper was supported by research funds of Chonbuk National University in 2014. I must thank the referees for their helpful comments.

1. Introduction

The aim of this paper is to introduce non-algebraic Kripke-style semantics. i.e. set-theoretical Kripke-style semantics. for three-valued paraconsistent logic. For this, note that the present author introduced two kinds of (binary) Kripke-style semantics, i.e., algebraic and non-algebraic Kripke-style semantics, for logics with pseudo-Boolean (briefly, pB) and de Morgan (briefly, dM) negations in Yang(201+). But the author did not consider such semantics for logics with weak-Boolean (briefly, wB) negations. While paraconsistent logics have in general wB negations, which dual of pВ negations such as the intuitionistic are and Dummett-Gödel logics H and G have, it is not clear whether such semantics work for three-valued paraconsistent systems.

As its answer, the author also introduced algebraic Kripke-style semantics for three-valued *paraconsistent* systems in Yang(2014). However, it was an open problem to show that the other kind of binary Kripke-style semantics works for three-valued paraconsistent logic. This paper resolves the remaining problem by introducing non-algebraic set-theoretic Kripke-style semantics for such systems.

The paper is organized as follows. First, in Section 2, we introduce, more exactly recall the systems $IUML_3$ (the $IUML_3$ with a wB negation) and G^{wB}_3 (the G_3 with a wB negation in place of its pB negation) introduced in Yang(2014). Next, in Section 3, we introduce the other kind of binary relational Kripke-style semantics, non-algebraic set-theoretical Kripke-style semantics, for the above mentioned three-valued systems.

For ease, let us denote wB negation by - and dM negation by \sim . Moreover, for convenience, we adopt notations and terminology similar to those in Dunn(2000), Metcalfe & Montagna(2007), Montagna & Sacchetti(2003; 2004), Yang(2012a; 2012b; 2012c) and assume reader familiarity with them (together with results found therein).

2. Three-valued paraconsistent systems

We base three-valued paraconsistent logics on a countable propositional language with formulas Fm built inductively as usual from a set of propositional variables VAR, binary connectives \rightarrow , &, \wedge , \vee , and constants F, f, t, with a defined connective:

dfl. A
$$\leftrightarrow$$
 B := (A \rightarrow B) \land (B \rightarrow A).

We further define T and A_t as $F \rightarrow F$ and $A \wedge t$, respectively. We use the axiom systems to provide a consequence relation.

Definition 2.1 (Yang(2014))

(i) IUML⁻₃ consists of the following axiom schemes and rules:
df2. -A := (T → A) → F
A1. A → A (self-implication, SI)
A2. (A ∧ B) → A, (A ∧ B) → B (∧-elimination, ∧-E)
A3. ((A→B) ∧ (A→C)) → (A → (B∧C)) (∧-introduction, ∧-I)
A4. A → (A ∨ B), B → (A ∨ B) (∨-introduction, ∨-I)

A5. $((A \rightarrow C) \land (B \rightarrow C)) \rightarrow ((A \lor B) \rightarrow C) (\lor$ -elimination, \lor -E) A6. (A & B) \rightarrow (B & A) (&-commutativity, &-C) A7. (A & t) \leftrightarrow A (push and pop, PP) A8. $\mathbf{F} \rightarrow \mathbf{A}$ (ex falsum quodlibet, EF) A9. A \rightarrow T (verum ex quolibet, VE) A10. $(A \rightarrow (B \rightarrow C)) \leftrightarrow ((A \& B) \rightarrow C)$ (residuation, RE) A11. $(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ (suffixing, SF) A12. $(A \rightarrow B)_t \lor (B \rightarrow A)_t$ (t-prelinearity, PL_t) A13. $\sim A \rightarrow A$ (double negation elimination, DNE) A14. (A & A) \leftrightarrow A (idempotence, ID) A15. $\mathbf{t} \leftrightarrow \mathbf{f}$ (fixed-point, FP) A16. A \rightarrow (~ A \rightarrow A) (RM3(1)) A17. A \vee (A \rightarrow B) (RM3(2)) A18. --A \rightarrow A (classical double negation, ClDN) A19. A \rightarrow (B \vee -B) (triviality, TRI) A20. $(A \rightarrow B) \rightarrow (-B \rightarrow -A)$ (contraposition, CP⁻) A21. (A \wedge -B) \rightarrow -(A \rightarrow B) (-1) A22. $\sim A \rightarrow -A$ (-2) A23. -(A & B) \rightarrow ((A \land B) \rightarrow (-A \land -B)) (-3) A24. --(A & B) \rightarrow (-A \rightarrow B) (-4) A25. $((A \rightarrow B) \land -(A \rightarrow B)) \rightarrow (A \land -B)$ (IUML⁻³) $A \rightarrow B, A \vdash B \pmod{ponens, mp}$ A, B \vdash A \land B (adjunction, adj) (ii) $\mathbf{G}^{\text{wB}}_{3}$ is A1 - A12, A14, A18, A19, (mp), (adj) plus A26. A \rightarrow (B \rightarrow A) (weakening, W) A27. $(A \land B) \leftrightarrow (-A \lor -B) (DM1)$ A28. -(A \vee B) \leftrightarrow (-A \wedge -B) (DM2⁻)

A29.
$$((A \rightarrow -(C \lor -C)) \rightarrow B) \rightarrow (((B \rightarrow A) \rightarrow B) \rightarrow B)$$
 (G3)
A30. $((A \rightarrow B) \land -(A \rightarrow B)) \rightarrow (--A \land -B)$ (G⁻3(1))
A31. $(--A \land -B) \rightarrow -(A \rightarrow B)$ (G⁻3(2))

For easy reference, we let Ls_3 be the set of the three-valued systems introduced in Definition 2.1.

Definition 2.2 $Ls_3 = \{IUML_3, G^{wB}_3\}.$

A *theory* is a set of formulas closed under consequence relation. A *proof* in a theory Γ over L₃ (\in Ls₃) is a sequence s of formulas such that each element of s is either an axiom of L₃, a member of Γ , or is derivable from previous elements of s by means of a rule of L₃. $\Gamma \vdash A$, more exactly $\Gamma \vdash_{L^3} A$, means that A is *provable* in Γ with respect to (w.r.t.) L₃, i.e., there is an L₃-proof of A in Γ . A theory Γ is *trivial* if $\Gamma \vdash \mathbf{F}$; otherwise, it is *non-trivial*.

The deduction theorems for L_3 are as follows:

Proposition 2.3 (Yang(2014)) Let Γ be a theory over L₃ and A, B be formulas.

(i) $\Gamma \cup \{A\} \vdash \text{IUML}_3 B \text{ iff } \Gamma \vdash \text{IUML}_3 A_t \rightarrow B.$ (ii) $\Gamma \cup \{A\} \vdash G^{\text{wB}_3} B \text{ iff } \Gamma \vdash G^{\text{wB}_3} A \rightarrow B.$

The following formulas can be proved straightforwardly.

Proposition 2.4 (Yang(2014))

- (i) L_3 (\in Ls_3) proves:
- (1) (A & (B & C)) \rightarrow ((A & B) & C) (associativity, AS)
- (2) (A \rightarrow B) \vee (B \rightarrow A) (prelinearity, PL)
- (3) A \vee -A (excluded middle, EM)
- (ii) IUML³ proves:
- (1) ~~ A \leftrightarrow A (double negation, DN)
- (iii) \mathbf{G}^{wB}_{3} proves (CP) and:
- (1) $\mathbf{t} \leftrightarrow \mathbf{T}$ (INT).

3. Set-theoretical Kripke-style semantics

3.1. Semantics

Here, we consider non-algebraic set-theoretical and binary relational Kripke-style semantics for L₃. Let us regard an evaluation to be a function from sentences to non-empty sets of two truth values, including the set having both truth values to account for overdetermination. We regard a three-valued matrix as a lattice and call it the *lattice* $\mathbf{3}_B$; we denote each set of value(s) {0}, {1}, and {0, 1} by F, T, and B, respectively (see Figure 1).

Figure 1: The lattice $\mathbf{3}_{B}$

Each matrix for ~, -, \land , \lor , and \rightarrow can be defined as in Table 1 (+ indicates the designated value(s)).¹)

-		~	
T+	F	T+	F
В	Т	B+	Т
F	Т	F	Т

\land	Т	В	F
T+	Т	В	F
B(+)	В	В	F
F	F	F	F

\vee	Т	В	F	
T+	Т	Т	Т	
B(+)	Т	В	В	
F	Т	В	F	

\rightarrow_{G3}	T B F	\rightarrow_{RM3}	T B F
T+	T B F	T+	TFF
В	T T F	B+	T B F
F	ТТТ	F	ТТТ

Table 1: Three-valued matrices for evaluations of L₃

Note that, in Table 1, we take \rightarrow_{G3} and \rightarrow_{RM3} for \mathbf{G}^{WB}_{3} and \mathbf{IUML}_{3} , respectively.

Next, as in Dunn(2000), let us define evaluations. An evaluation into $\mathbf{3}_{\mathrm{B}}$ is a function v from sentences into $\mathbf{3}_{\mathrm{B}}$ such that v(-A) =

¹⁾ We do not have to introduce the matrix for & because & is \wedge in \mathbf{G}^{wB}_{3} , and definable in \mathbf{IUML}_{3} using \sim and \rightarrow connectives. Note that, while the matrices for \mathbf{G}^{wB}_{3} have one designated element T, the matrices for \mathbf{IUML}_{3} have the two T, B. By (+), we ambiguously express these in the matrices for \wedge and \vee .

-v(A), v(~A) = ~v(A), v(A \land B) = v(A) \land v(B), v(A \lor B) = v(A) \lor v(B), and v(A \rightarrow B) = v(A) \rightarrow v(B). As the labeling of Figure 1 reveals, we can view **3**_B as consisting of subsets of the usual two truth values. Thus, equivalently, an evaluation can be regarded as a map v from sentences into the powerset of {1, 0} (see below). For a *total evaluation*, we always have at least one of 0, 1 \in v(A). We write $\Vdash^{v_1} A$ for 1 \in v(A) and $\Vdash^{v_0} A$ for 0 \in v(A). Like the two-valued matrix for classical logic CL, we call a matrix *characteristic* for a calculus L when a formula A is provable if it assumes a designated value for every assignment of values to its variables, i.e., if L is weak complete w.r.t. the matrix (see e.g. Dunn(2000) and Dunn & Hardegree(2001).

Definition 3.1 (Dunn(2000)) A binary relational Kripke frame (briefly a frame) is a structure $S = (U, \zeta, \Box)$, where $\zeta \in U$ and \Box is a partial order (p.o.) on U.}

As X in Section 3, we regard U as a set of nodes. Then, ζ is the base state of information, and it further does not hurt to require that ζ be the least element of U under \Box . By Σ , we denote the class of all frames. For L₃, we need to consider frames where \Box is connected in the sense that, for any α , $\beta \in U$, either $\alpha \equiv \beta$ or $\beta \equiv \alpha$. A *linear order* (l.o.) is a connected partial order. Then a *linear frame* is a structure **S** = (U, ζ , \Box), where $\zeta \in U$ and \Box is an l.o. on U.

We assume that there are denumerably many atomic sentences, and that the class of formulas Fm is defined inductively from these in the usual manner, utilizing the connectives -, ~, \land , \lor , and \rightarrow . A (parameterized) L_3 -evaluation on a linear frame **S** is a function $v(A, \alpha)$ from $Fm \times U$ into **3**_B subject to the conditions below. We denote the set of these evaluations as Val_{L3} , and we write $\alpha \Vdash^{v_1} A$ for 1 in $v(A, \alpha)$ and $\alpha \Vdash^{v_0} A$ for 0 in $v(A, \alpha)$. In context, we often leave the superscript v implicit.

(Atomic Hereditary Conditions (AHC)) for any atomic sentence p, (HC₁) $\alpha \Vdash_{1}^{v} p$ and $\alpha \sqsubseteq \beta \Rightarrow \beta \Vdash_{1}^{v} p$; (HC₀) $\alpha \Vdash_{0}^{v} p$ and $\alpha \sqsubseteq \beta \Rightarrow \beta \Vdash_{0}^{v} p$.

The truth and falsity conditions for propositional constants \mathbf{t} , \mathbf{f} , \mathbf{T} , \mathbf{F} , and compound sentences are then given by the following clauses:

(tf₁)
$$a \Vdash_{1} t \Leftrightarrow a \Vdash_{1} f$$
;
(tf₀) $a \Vdash_{0} t \Leftrightarrow a \Vdash_{0} f$;
(\top_{1}) $a \Vdash_{1} T$ always;
(\top_{0}) $a \Vdash_{0} T$ never;
(\bot_{1}) $a \Vdash_{1} F$ never;
(\bot_{1}) $a \Vdash_{1} F$ never;
(\bot_{0}) $a \Vdash_{0} F$ always;
(-1) $a \Vdash_{1} -A \Leftrightarrow a \Vdash_{0} A$;
(-0) $a \Vdash_{0} -A \Leftrightarrow a \nVdash_{0} A$;
(-1) $a \Vdash_{1} -A \Leftrightarrow a \Vdash_{0} A$;
(-1) $a \Vdash_{1} -A \Leftrightarrow a \Vdash_{0} A$;
(-1) $a \Vdash_{1} -A \Leftrightarrow a \Vdash_{0} A$;
(-1) $a \Vdash_{1} -A \Leftrightarrow a \Vdash_{0} A$;
(-1) $a \Vdash_{1} A \land B \Leftrightarrow a \Vdash_{1} A$ and $a \Vdash_{1} B$;
(\wedge_{1}) $a \Vdash_{1} A \land B \Leftrightarrow a \Vdash_{0} A$ or $a \Vdash_{0} B$;
(\wedge_{0}) $a \Vdash_{0} A \land B \Leftrightarrow a \Vdash_{0} A$ or $a \Vdash_{0} B$;
(\vee_{1}) $a \Vdash_{1} A \lor B \Leftrightarrow a \Vdash_{1} A$ or $a \Vdash_{1} B$;

$$(\vee_{0}) \ \alpha \Vdash_{0} A \lor B \Leftrightarrow \alpha \Vdash_{0} A \text{ and } \alpha \Vdash_{0} B;$$

$$(\rightarrow_{1}) \ \alpha \Vdash_{1} A \rightarrow B \Leftrightarrow (i) \text{ for all } \beta \sqsupseteq \alpha, (\beta \Vdash_{1} A \Rightarrow \beta \Vdash_{1} B), \text{ and}$$

$$(ii) \text{ for all } \beta \sqsupseteq \alpha, (\beta \Vdash_{0} B \Rightarrow \beta \Vdash_{0} A);$$

$$(\rightarrow_{0G3}) \ \alpha \Vdash_{0} A \rightarrow B \Leftrightarrow (i) \ \alpha \Vdash_{0} - A, \text{ i.e., for all } \beta \sqsupseteq \alpha, \beta \nvDash_{0}$$

$$A, \text{ and } \alpha \Vdash_{0} B, \text{ or}$$

$$(ii) \ \alpha \nvDash_{1} A \rightarrow B;$$

$$(\rightarrow_{0RM3}) \ \alpha \Vdash_{0} A \rightarrow B \Leftrightarrow (i) \ \alpha \Vdash_{1} A \text{ and } \alpha \Vdash_{0} B, \text{ or}$$

$$(ii) \ \alpha \nvDash_{1} A \rightarrow B.$$

Note that, w.r.t. the truth condition of implication, we take (\rightarrow_1) for L₃, but w.r.t. the falsity condition of implication, we take (\rightarrow_{0G3}) and (\rightarrow_{0RM3}) for $\mathbf{G}^{wB}{}_3$ and IUML⁻₃, respectively. More exactly, the $\mathbf{G}^{wB}{}_3$ -evaluation has the conditions (-1), (-0), (\wedge_1) , (\wedge_0) , (\vee_1) , (\vee_0) , (\rightarrow_1) , and (\rightarrow_{0G3}) ; the IUML⁻₃-evaluation has the conditions (tf₁), (tf₀), (\top_1) , (\top_0) , (\perp_1) , (\perp_0) , (-1), (-0), (\sim_1) , (\sim_0) , (\wedge_1) , (\wedge_0) , (\vee_1) , (\vee_0) , (\vee_1) , (\vee_0) , (\vee_1) , (\vee_0) , (\vee_1) , (\vee_0) , (\vee_1) , and (\rightarrow_{0RM3}) .

A sentence A is L_3 -valid in a frame $S = (U, \zeta, \Box)$ iff, for all v in Val_{L3}, $\zeta \Vdash^{v_1} A$. Let Θ be the class of linear frames. A sentence A is L₃-valid, in symbols $\vDash_{L3} A$, iff, for all $S \subseteq \Theta$, A is L_3 -valid in S.

Given a class of $\vDash M_{L3}$ for L₃, we can define (simple truth preserving, corresponding to \vDash_{1}) consequence as follows:

Definition 3.2 $\Gamma \vDash_{L3} A$ iff, for all $\vDash M = (U, \zeta, \sqsubseteq, v) \in$ \mathbf{M}_{L3} , if $\zeta \Vdash_{1}^{v} B$ for all $B \in \Gamma$, then $\zeta \Vdash_{1}^{v} A$.

3.2. Soundness and completeness for L_3

First we note the following lemma, which is useful for the verification of each instance of the axiom schemes in Proposition 3.4 below:

Lemma 3.3 (Hereditary Lemma) For any sentence A, (i) if $\alpha \Vdash^{v_1} A$ and $\alpha \sqsubseteq \beta$, then $\beta \Vdash^{v_1} A$, and (ii) if $\alpha \Vdash^{v_0} A$ and $\alpha \sqsubseteq \beta$, then $\beta \Vdash^{v_0} A$.

Proof: See Hereditary Lemma in Dunn(1976) and Lemmas 1 and 5 in Yang(2012a).

Proposition 3.4 (Soundness) If $\vdash_{L^3} A$, then $\models_{L^3} A$.

Proof: The rules of L_3 are (mp) and (adj). Both of these obviously preserve truth, i.e., L_3 -validity. (For the former, look at (\rightarrow_1) and recall that \sqsubseteq is reflexive; for the latter, look at (\wedge_1) .) Thus, the proof reduces to verification of axioms for L_3 . We verify A18 and A30 as examples.

For A18, we must show that (i) $\alpha \Vdash_1 -A$ only if $\alpha \Vdash_1 A$ and (ii) $\alpha \Vdash_0 A$ only if $\alpha \Vdash_0 -A$. For (i), let $\alpha \Vdash_1 -A$. By (-1) and (-0), we have $\alpha \Vdash_1 -A$ iff $\alpha \Vdash_0 -A$ iff $\alpha \nvDash_0 A$. Then, since the evaluation is total, we obtain $\alpha \Vdash_1 A$. The proof for (ii) is analogous.

For A30, we must show that (i) $a \Vdash_1 (A \rightarrow B) \land -(A \rightarrow B)$ only if $a \Vdash_1 -A \land -B$ and (ii) $a \Vdash_0 -A \land -B$ only if $a \Vdash_0 (A \rightarrow B) \land -(A \rightarrow B)$. For (i), let $a \Vdash_1 (A \rightarrow B) \land -(A \rightarrow B)$. By (\wedge_1) , we have $\alpha \Vdash_1 A \rightarrow B$ and $\alpha \Vdash_1 -(A \rightarrow B)$. By (-1) and (\rightarrow_{0G3}), we have $\alpha \Vdash_1 -(A \rightarrow B)$ iff $\alpha \Vdash_0 A \rightarrow B$ iff $\alpha \Vdash_0 -A$ and $\alpha \Vdash_0 B$ iff $\alpha \Vdash_1 -A$ and $\alpha \Vdash_1 -B$. Therefore, by (\wedge_1), we have $\alpha \Vdash_1 -A \wedge -B$. For (ii), let $\alpha \Vdash_0 -A \wedge -B$. By (\wedge_0) and (-0), we have $\alpha \Vdash_0 -A \wedge -B$ iff $\alpha \Vdash_0 -A$ or $\alpha \Vdash_0 -B$ iff $\alpha \nvDash_0 -A$ or $\alpha \bowtie_0 -A$ or $\alpha \nvDash_0 -A$ or $\alpha \Vdash_0 -A$ or $\alpha \Vdash_0 -A$ or $\alpha \nvDash_0 -A$ or $\alpha \bowtie_0 -A$ or $\alpha \Vdash_0 -A \rightarrow B$ iff $\alpha \Vdash_0 -A \rightarrow B$ iff $\alpha \Vdash_0 -A \rightarrow B$ or $\alpha \Vdash_0 -(A \rightarrow B)$ by (\wedge_0), we have $\alpha \Vdash_0 (A \rightarrow B) \wedge -(A \rightarrow B) \wedge -(A \rightarrow B)$.

The verification of other axiom schemes for L_3 is left to the reader. \Box

We give completeness results for L_3 by using the well-known Henkin-style proofs for modal logic, but with prime theories in place of maximal theories. We call a theory Γ prime if, for each pair A, B of formulas such that $\Gamma \vdash A \lor B$, $\Gamma \vdash A$ or $\Gamma \vdash B$. By an L_3 -theory, we mean a theory Γ closed under rules of L_3 . As in relevance logic, by a regular L_3 -theory, we mean an L_3 -theory containing all of the theorems of L_3 . Since we have no use of irregular theories, from now on, by an L_3 -theory, we henceforth mean a regular L_3 -theory.

Moreover, where Γ is a prime L₃-theory, we define the *canonical* L_3 frame determined by Γ to be a structure $\mathbf{S} = (U_{can}, \zeta_{can}, \sqsubseteq_{can})$, where ζ_{can} is the Γ , U_{can} is the set of prime L₃ theories extending ζ_{can} , and \sqsubseteq_{can} is \subseteq restricted to U_{can} . Note that the base ζ_{can} is constructed as the prime L₃-theory that excludes nontheorems of L₃, i.e., excludes A such that not $\vdash_{L_3} A$. The partial orderedness and

the linear orderedness of the canonical L_3 frame depend on \subseteq restricted on U_{can} . Then, first, the following is obvious.

Proposition 3.5 The canonical L_3 frame is linearly ordered.

Proof: By Proposition 26 in Dunn(2000).

Next, we define a canonical evaluation as follows:

(1) $1 \in v_{can}(A, a) \Leftrightarrow A \in a;$ (2) $0 \in v_{can}(A, a) \Leftrightarrow -A (\sim A \text{ resp}) \in a.$

This definition allows us to state the following lemma.

Lemma 3.6 (Canonical Evaluation Lemma) v_{can} is an evaluation.

Proof: The Hereditary Conditions (HC₁) and (HC₀) are obvious. Thus, we show that the canonical evaluation v_{can} satisfies the truth and falsity conditions above. We prove here the truth and falsity conditions (-1) and (-0) and the falsity condition of implication (\rightarrow _{0G3})

For (-1), we must show

$$\alpha \Vdash^{\operatorname{Vcan}}_{1}$$
 -A iff $\alpha \Vdash^{\operatorname{Vcan}}_{0}$ A.

By (1) and (2), we have $\alpha \Vdash^{Vcan}_{1}$ -A iff -A $\in \alpha$ iff $\alpha \Vdash^{Vcan}_{0}$ A. For (-0), we must show 78 Eunsuk Yang

$$\alpha \Vdash^{\operatorname{Vcan}}_{0}$$
 -A iff $\alpha \nvDash^{\operatorname{Vcan}}_{0}$ A.

By (2), we have $a \Vdash^{Vcan}_{0}$ -A iff --A $\in a$. Then, since -B for any formula B has boolean properties, we have --B $\in a$ iff -B $\not\in a$. Therefore, by (2), we have --A $\in a$ iff -A $\not\in a$ iff $a \nvDash^{Vcan}_{0} A$. For (\rightarrow_{0G3}) , we must show

For the left-to-right direction, let $\alpha \Vdash^{Vcan}{}_{0} A \rightarrow B$. By (1) and (2), we have $\alpha \Vdash^{Vcan}{}_{0} A \rightarrow B$ iff $-(A \rightarrow B) \in \alpha$ iff $\alpha \Vdash^{Vcan}{}_{1} -(A \rightarrow B)$. If $A \rightarrow B \in \alpha$, we obtain $-A \wedge -B \in \alpha$ using A30. Therefore, by (1) and (2), we obtain $\alpha \Vdash^{Vcan}{}_{1} -A$ and $\alpha \Vdash^{Vcan}{}_{0} B$. If $A \rightarrow B \not\in \alpha$, we have $\alpha \nvDash^{Vcan}{}_{1} A \rightarrow B$. For the right-to-left direction, we first assume $\alpha \Vdash^{Vcan}{}_{1} -A$ and $\alpha \Vdash^{Vcan}{}_{0} B$. Then, using (1), (2), and A31, we can obtain $\alpha \Vdash^{Vcan}{}_{0} A \rightarrow B$. Let $\alpha \nvDash^{Vcan}{}_{1} A$ $\rightarrow B$. (EM) and primeness ensures $\alpha \Vdash^{Vcan}{}_{0} A \rightarrow B$.

Let us call a model M, = (U, ζ , \equiv , v), for L₃, an L₃ model. Then, by Lemma 3.6, the canonically defined (U_{can}, ζ_{can} , \equiv_{can} , v_{can}) is an L₃ model. Thus, since, by construction, ζ_{can} excludes our chosen nontheorem A, and the canonical definition of \vDash agrees with membership, we can state that, for each nontheorem A of L₃, there is an L₃ model in which A is not $\zeta_{can} \vDash$ A. It gives us the weak completeness of L₃ as follows.

Theorem 3.7 (Weak completeness) If $\vDash_{L_3} A$, then $\vdash_{L_3} A$.

Next, we prove the strong completeness of L_3 . As for \mathbb{R}^+ in Anderson et al.(1992), we define A to be an L_3 consequence of a theory Γ iff for every L_3 model, whenever $a \vDash B$ for every $B \Subset$ Γ , $a \vDash A$, for all $a \Subset U$. We say that A is L_3 deducible from Γ iff A is in every L_3 -theory containing Γ . Where Δ is a set of formulas not necessarily a theory, $\Delta \vdash A$ can be thought of as saying that A is deducible from the axioms Δ . The set of $\{A: \Delta \vdash$ $A\}$ is intuitively the smallest theory containing the axioms Δ , and we shall label it as $Th(\Delta)$. Then,

Proposition 3.8 Let Γ be a theory over L₃. If $\Gamma \nvDash_{L_3} A$, then there is a prime theory Γ' such that $\Gamma \subseteq \Gamma'$ and $A \not\in \Gamma'$.}

Proof: We prove the case of IUML'₃ as an example. Let L_3 be IUML'₃. Take an enumeration $\{A_n: n \in \omega\}$ of the well-formed formulas of L_3 . We define a sequence of sets by induction as follows:

$$\Gamma_0 = \{A': \Gamma \vdash_{L^3} A'\}.$$

$$\Gamma_{i+1} = Th(\Gamma_i \cup \{A_{i+1}\}) \quad \text{if } \Gamma_i, A_{i+1} \nvDash_{L^3} A,$$

$$\Gamma_i \qquad \text{otherwise.}$$

Let Γ' be the union of all these Γ_n 's. The primeness of Γ' can be proved using the deduction theorem for IUML⁻₃, i.e., Proposition 2.3 (i), along the usual lines. \Box

80 Eunsuk Yang

Thus, using Lemma 3.6 and Proposition 3.8, we can show strong completeness of L_3 as follows.

Theorem 3.9 (Strong completeness) Let Γ be a theory over L₃. If $\Gamma \models_{L_3} A$, then $\Gamma \vdash_{L_3} A$.

4. Concluding remark

Yang investigated algebraic Kripke-style semantics for three-valued paraconsistent systems in Yang(2014). We further investigated non-algebraic set-theoretical Kripke-style semantics for such systems. But three-valued paraconsistent system having algebraic Kripke-style semantics but not set-theoretical Kripke-style semantics, and vice versa, have not yet been studied. This is a problem left in this paper.

References

- Anderson, A. R., Belnap, N. D., and Dunn, J. M. (1992), *Entailment: The Logic of Relevance and Necessity*, vol 2, Princeton, Princeton Univ. Press.
- Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic, pp. 673-704.
- Dunn, J. M. (1976), "A Kripke-style semantics for R-Mingle using a binary accessibility relation", *Studia Logica*, 35, pp. 163-172.
- Dunn, J. M. (1986), "Relevance logic and entailment", In D. Gabbay and F. Guenthner (eds.), Dordrecht, Handbook of Philosophical Logic, vol III, D. Reidel Publ. Co., pp. 117-224.
- Dunn, J. M.(2000), "Partiality and its Dual", Studia Logica, 66, pp. 5-40.
- Dunn, J. M. and Hardegree, G. (2001), Algebraic Methods in *Philosophical Logic*, Oxford, Oxford Univ Press.
- Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. (2007), Residuated lattices: an algebraic glimpse at substructural logics, Amsterdam, Elsevier.
- Metcalfe, G., and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864.
- Montagna, F. and Ono, H. (2002), "Kripke semantics, undecidability and standard completeness for Esteva and Godo's Logic MTL∀", Studia Logica, 71, pp. 227-245.
- Montagna, F. and Sacchetti, L. (2003), "Kripke-style semantics for many-valued logics", *Mathematical Logic Quaterly*, 49, pp. 629-641.

- Montagna, F. and Sacchetti, L. (2004), "Corrigendum to "Kripke-style semantics for many-valued logics", *Mathematical Logic Quaterly*, 50, pp. 104-107.
- Tsinakis, C., and Blount, K. (2003), "The structure of residuated lattices", *International Journal of Algebra and Computation*, 13, pp. 437-461.
- Yang, E. (2012a), "(Star-based) three-valued Kripke-style semantics for pseudo- and weak-Boolean logics", Logic Journal of the IGPL, 20, pp. 187-206.
- Yang, E. (2012b), "Kripke-style semantics for UL", Korean Journal of Logic, 15/1, pp. 1-15.
- Yang, E. (2012c), "**R**, fuzzy **R**, and algebraic Kripke-style semantics", *Korean Journal of Logic*, 15/2, pp. 207-221.
- Yang, E. (2013), "**R** and Relevance principle revisited", Journal of *Philosophical Logic*, 42, pp. 767-782.
- Yang, E. (2014), "Algebraic Kripke-style semantics for three-valued paraconsistent logic", *Korean Journal of Logic*, 17/3, pp. 441-460.
- Yang, E. (201+), "Two kinds of (binary) Kripke-style semantics for three-valued logic", Logique et Analyse, To appear.

전북대학교 철학과, 비판적사고와논술연구소

Department of Philosophy & Institute of Critical Thinking and Writing, Chonbuk National University eunsyang@jbnu.ac.kr 3치 초일관 논리를 위한 집합-이론적 크립키형 의미론

양 은 석

이 글에서 우리는 3치 초일관 논리를 위한 비대수적 집합-이론적 크립키형 의미론을 다룬다. 이를 위하여 먼저 두 3치 체계를 소개 한다. 그리고 그 다음에 이에 상응하는 집합-이론적 크립키형 의미 론을 소개한다.

주요어: (집합-이론적) 크립키형 의미론, 대수적 의미론, 3치 논 리, 초일관 논리