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[Abstract] This paper deals with non-algebraic Kripke-style semantics for

three-valued paraconsistent logic: set-theoretical Kripke-style semantics. We
first recall two three-valued paraconsistent systems. We next introduce
set-theoretical Kripke-style semantics for them.
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1. Introduction

The aim of this paper is to introduce non-algebraic Kripke-style
semantics, 1.e, set-theoretical  Kripke-style  semantics, for
three-valued paraconsistent logic. For this, note that the present
author introduced two kinds of (binary) Kripke-style semantics,
i.e., algebraic and non-algebraic Kripke-style semantics, for logics
with pseudo-Boolean (briefly, pB) and de Morgan (briefly, dM)
negations in Yang(201+). But the author did not consider such
semantics for logics with weak-Boolean (briefly, wB) negations.
While paraconsistent logics have in general wB negations, which
are dual of pB negations such as the intuitionistic and
Dummett-Godel logics H and G have, it is not clear whether such
semantics work for three-valued paraconsistent systems.

As its answer, the author also introduced algebraic Kripke-style
semantics for three-valued paraconsistent systems in Yang(2014).
However, it was an open problem to show that the other kind of
binary Kripke-style semantics works for three-valued paraconsistent
logic. This paper resolves the remaining problem by introducing
non-algebraic set-theoretic Kripke-style semantics for such systems.

The paper is organized as follows. First, in Section 2, we
introduce, more exactly recall the systems IUML’ (the IUML;
with a wB negation) and G""; (the G; with a wB negation in
place of its pB negation) introduced in Yang(2014). Next, in
Section 3, we introduce the other kind of binary relational
Kripke-style semantics, non-algebraic set-theoretical Kripke-style

semantics, for the above mentioned three-valued systems.
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For ease, let us denote wB negation by - and dM negation by
~. Moreover, for convenience, we adopt notations and terminology
similar to those in Dunn(2000), Metcalfe & Montagna(2007),
Montagna & Sacchetti(2003; 2004), Yang(2012a; 2012b; 2012c)
and assume reader familiarity with them (together with results

found therein).

2. Three-valued paraconsistent systems

We base three-valued paraconsistent logics on a countable
propositional language with formulas Fm built inductively as usual
from a set of propositional variables VAR, binary connectives —,

&, N, V, and constants F, f, t, with a defined connective:
dfl. A <> B = (A — B) A (B — A).

We further define T and A as F — F and A A
respectively. We use the axiom systems to provide a consequence

relation.

Definition 2.1 (Yang(2014))

(1) IUML’; consists of the following axiom schemes and rules:
df2. -A = (T — A) —> F

Al. A — A (self-implication, SI)

A2. (A N B) = A, (A N B) > B (A-elimination, /A-E)
A3. (A—B) N (A—C)) = (A — (BAC)) (A-introduction, A-I)
A4d. A — (A V B), B— (A V B) (V-introduction, V-I)
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AS5. (A—C) N (B—C)) — (AVB) — C) (V-elimination, V-E)
A6. (A & B) > (B & A) (&-commutativity, &-C)

A7. (A & t) < A (push and pop, PP)

A8. F — A (ex falsum quodlibet, EF)

A9. A — T (verum ex quolibet, VE)

A10. (A > (B — C)) < ((A & B) — C) (residuation, RE)
All. (A — B) > (B > C) — (A — ()) (suffixing, SF)
Al12. (A — B) V (B — A)¢ (t-prelinearity, PLy)

Al13. ~~A — A (double negation elimination, DNE)

Al4. (A & A) < A (idempotence, ID)

Al15. t < f (fixed-point, FP)

Ale. A — (~ A — A) (RM3(1))

Al7. A vV (A — B) (RM3(2))

A18. --A — A (classical double negation, CIDN)

A19. A — (B V -B) (triviality, TRI)

A20. (A — B) — (-B — -A) (contraposition, CP)

A21. (A N -B) = -(A — B) (-1)

A22. ~A — -A (-2)

A23. -(A & B) > (A N B) > (-A A -B)) (-3)

A24. --(A & B) — (-A — B) (-4)

A25. (A > B) AN (A — B)) > (A A -B) (IUML?3)

A — B, A + B (modus ponens, mp)

A, B = A A B (adjunction, adj)

(i) G'®; is Al - Al12, Al4, A18, A19, (mp), (adj) plus
A26. A — (B — A) (weakening, W)

A27. (A N B) « (-A V -B) (DMI)

A28. -(A V B) < (-A N -B) (DM2)
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A29. (A — «(C V -C)) — B) — (B — A) — B) — B) (G3)
A30. (A — B) A -(A — B)) — (-A A -B) (G3(1))
A3l (-A A -B) — (A — B) (G3(2))

For easy reference, we let Ls; be the set of the three-valued

systems introduced in Definition 2.1.
Definition 2.2 Ls; = {IUML3, G""3}.

A theory 1s a set of formulas closed under consequence
relation. A proof in a theory I' over L3 (€ Ls3) is a sequence s
of formulas such that each element of s is either an axiom of Ls,
a member of I', or is derivable from previous elements of s by
means of a rule of Ls. I' = A, more exactly I' Fr; A, means
that A is provable in I' with respect to (w.r.t.) Ls, i.e., there is
an Ls-proof of A i I A theory I' is trivial if I' = F;
otherwise, it 1s non-trivial.

The deduction theorems for L; are as follows:

Proposition 2.3 (Yang(2014)) Let I' be a theory over L; and A,
B be formulas.

i) I' U {A} Fwow, B iff I' Fww, A¢ — B.

(i) I' U {A} Fe» B iff ' e A — B.

The following formulas can be proved straightforwardly.
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Proposition 2.4 (Yang(2014))

1) L3 (& Lss) proves:

1) (A & B & C)) = (A & B) & C) (associativity, AS)
2) (A > B) V (B — A) (prelinearity, PL)

3) AV -A (excluded middle, EM)

ii) IUML’; proves:

1) ~~ A < A (double negation, DN)

iii) G""; proves (CP) and:

1) t & T (INT).

e e N e e e e s

3. Set-theoretical Kripke-style semantics
3.1. Semantics

Here, we consider non-algebraic set-theoretical and binary
relational Kripke-style semantics for Ls;. Let us regard an evaluation
to be a function from sentences to non-empty sets of two truth
values, including the set having both truth values to account for
overdetermination. We regard a three-valued matrix as a lattice and
call it the lattice 3p; we denote each set of value(s) {0}, {1}, and
{0, 1} by F, T, and B, respectively (see Figure 1).

=T @

|

(1,0 =B @
|

0} =F @

Figure 1: The lattice 33
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Each matrix for ~, -, /A, V, and — can be defined as in Table
1 (+ indicates the designated value(s)).D

T+ | F T+ | F

B B+

F T F T

A T B F Vv T B F

T+ T B F T+ T T T

B+) | B B F B+) | T B B

F F F F F T B F

—03 T B F —mis| T B F

T+ T B F T+ T F F
T T F B+ T B F

F T T T F T T T

Table 1: Three-valued matrices for evaluations of L;

Note that, in Table 1, we take —g3; and —grm3 for G"; and
IUML;, respectively.
Next, as in Dunn(2000), let us define evaluations. An evaluation

into 3g 1s a function v from sentences into 3z such that v(-A) =

) We do not have to introduce the matrix for & because & is A in G""3,
and definable in IUML7 using ~ and — connectives. Note that, while the
matrices for G""; have one desiganted element T, the mattrices for TUML’
have the two T, B. By (+), we ambiguously express these in the matrices
for A and V.



72 Eunsuk Yang

-v(A), v(~A) = ~v(A), v(A N B) = v(A) N v(B), V(A V B) =
v(A) V v(B), and v(A — B) = v(A) — v(B). As the labeling of
Figure 1 reveals, we can view 3p as consisting of subsets of the
usual two truth values. Thus, equivalently, an evaluation can be
regarded as a map v from sentences into the powerset of {1, 0}
(see below). For a total evaluation, we always have at least one of
0, 1 € v(A). We write '] A for I € v(A) and IF'y A for 0 €
v(A). Like the two-valued matrix for classical logic CL, we call a
matrix characteristic for a calculus L when a formula A 1s provable
if it assumes a designated value for every assignment of values to

its variables, i.e., if L is weak complete w.r.t. the matrix (see e.g.
Dunn(2000) and Dunn & Hardegree(2001).

Definition 3.1 (Dunn(2000)) A binary relational Kripke frame
(briefly a frame) is a structure § = (U, ¢, £), where ¢ € U and

C is a partial order (p.o.) on U.}

As X in Section 3, we regard U as a set of nodes. Then, T is the
base state of information, and it further does not hurt to require that
U be the least element of U under =. By 2., we denote the class
of all frames. For L;, we need to consider frames where T is
connected in the sense that, for any a, B & U, either a = B or 3
C a. A linear order (l.0.) is a connected partial order. Then a
linear frame is a structure S = (U, §, =), where ¢ & U and E 1s
an lLo. on U.

We assume that there are denumerably many atomic sentences,

and that the class of formulas Fm is defined inductively from these
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in the usual manner, utilizing the connectives -, ~, /A, V, and —.
A (parameterized) L;-evaluation on a linear frame S is a function
v(A, a) from Fm x U into 3 subject to the conditions below. We
denote the set of these evaluations as Valis;, and we write a -1 A
for 1 in v(A, a) and a IF'9 A for 0 in v(A, a). In context, we often

leave the superscript v implicit.

(Atomic Hereditary Conditions (AHC)) for any atomic sentence p,
(HC) a F'ypand a & B = B I p;
(HC) a Fypand a T B = B Iy p.

The truth and falsity conditions for propositional constants ¢, f, T,

F, and compound sentences are then given by the following clauses:

(tf) a F t = a IF; f;

(t) a Fot = a Iy f;

(T1) a IF; T always;

(To) a IFo T never;

(L) a I F never;

(Lo) a |-y F always;

() a - -A S a lFg A;

() a IFo -A < a Ko A,

(~1) a lF; ~A < a ko A;

(~0) a Fo ~A & a -1 A;

(A)a -t ANBSal; Aand a - B;
(ANg) a lFg A ANB < a kg Aora lFyB;
(V)a Ft AV B<al Aora - B;
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(Vo) a lFg AV B < a IFg A and a k¢ B;
(m)alFiA—>B< () forall B 3 a, (B IF, A= B IF, B),
and
(if) for all B 3 a, (B IFo B = B IFy A);
(—o3) a lFg A= B S (i)alFg- A, ie, forall B 3 a, B ¥y
A, and a |-y B, or
(i) a ¥, A — B;
(—omrm3) @ Fg A = B < (i) a IF; A and a Ik B, or
(i) a ¥ A — B.

Note that, w.r.t. the truth condition of implication, we take (—)
for L;, but w.r.t. the falsity condition of implication, we take (—oc3)
and (—orv3) for G'°; and IUML;, respectively. More exactly, the
G""s-evaluation has the conditions (-1), (-o), (A1), (Ao), (V1), (Vo)
(—1), and (—oc3); the IUML’-evaluation has the conditions (tf)),
(tfo), (T1), (To), (L), (Lo)s (-1), (-0), (~1)s (o), (A1), (Ao), (V),
(Vo), (™), and (—orwm).

A sentence A is Ls;-valid in a frame S = (U, ¢, &) iff, for all v
in Valis, ¢ IF'y A. Let ® be the class of linear frames. A sentence
A is Ls-valid, in symbols Fi3 A, iff, for all S & O, A is L;-valid
in S.

Given a class of F My for Ls;, we can define (simple truth

preserving, corresponding to Fi,) consequence as follows:

Definition 3.2 I' Ei5 A iff, for all E M = (U, {, C, v) €
My, if T IF'y B for all B € T, then T IF'} A}
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3.2. Soundness and completeness for Ls

First we note the following lemma, which is useful for the
verification of each instance of the axiom schemes in Proposition
3.4 below:

Lemma 3.3 (Hereditary Lemma) For any sentence A,
(i) if a Iy A and a = [, then B IF'} A, and
(i) if a F'9 A and a = £, then B ' A.

Proof: See Hereditary Lemma in Dunn(1976) and Lemmas |1
and 5 in Yang(2012a). []

Proposition 3.4 (Soundness) If F1; A, then Fr.. A.

Proof: The rules of Lj; are (mp) and (adj). Both of these
obviously preserve truth, 1.e., Ls-validity. (For the former, look at
(—1) and recall that = is reflexive; for the latter, look at (/).
Thus, the proof reduces to verification of axioms for Ls;. We
verify A18 and A30 as examples.

For A18, we must show that (i) a IF; --A only if a IF; A and
(i) a IFo A only if a k¢ --A. For (1), let a IF; --A. By (-;) and
(-0), we have a I, --A iff a k¢ -A iff a ¥ A. Then, since the
evaluation is total, we obtain a |- A. The proof for (ii) is
analogous.

For A30, we must show that (i) a -, (A — B) N -(A — B)
only if a IF; --A A -B and (i1)) a -9 --A A -B only if a |-y (A
— B) N -(A — B). For (i), let « ; (A — B) A -(A — B). By
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(A1), we have @ -y A — B and a |-, -(A — B). By (-1) and (—
0G3), we have a Ik, (A = B) iff a kg A — B iff a Iy -A and
a IFp B iff a I, --A and a IF; -B. Therefore, by (/\), we have
a -y --A A -B. For (11), let a IF¢ --A A -B. By (/\y) and (-¢), we
have a IFo --A A -Biff a ¢ --A or a |-y -B iff @ ¥y -A or a
¥y B. Then, by (—oc3) and (-¢), we further have a Wy -A or a Ky
B iff a ¥y A — B iff a IF¢ -(A — B). Then, since a -y (A —
B) AN (A = B)iff a ko (A — B) or a o -(A — B) by (/Ay),
we have a |9 (A — B) N -(A — B).

The verification of other axiom schemes for L; is left to the
reader. [ ]

We give completeness results for L3 by using the well-known
Henkin-style proofs for modal logic, but with prime theories in
place of maximal theories. We call a theory I' prime if, for each
pair A, B of formulas such that ' = A V B, ' = A or I' = B.
By an L;-theory, we mean a theory I' closed under rules of L;. As
in relevance logic, by a regular Ls-theory, we mean an Ls-theory
containing all of the theorems of Ls;. Since we have no use of
irregular theories, from now on, by an Ls-theory, we henceforth
mean a regular Ls-theory.

Moreover, where I' is a prime Ls-theory, we define the canonical
L; frame determined by I' to be a structure S = (Ucan, Sean, Ecan),
where Tean 15 the I', Ucan is the set of prime L; theories extending §
e, and T 18 < restricted to Ucn. Note that the base Teay 1S

constructed as the prime Ls-theory that excludes nontheorems of Lj,

i.e., excludes A such that not 1, A. The partial orderedness and
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the linear orderedness of the canonical L; frame depend on <

restricted on Uca. Then, first, the following is obvious.
Proposition 3.5 The canonical L; frame is linearly ordered.
Proof: By Proposition 26 in Dunn(2000). []
Next, we define a canonical evaluation as follows:

(D)1 € van(A, 0) & A € q
(2) 0 € ven(A, 0) < -A (~A resp) €

This definition allows us to state the following lemma.

Lemma 3.6 (Canonical Evaluation Lemma) v, is an evaluation.

Proof: The Hereditary Conditions (HC;) and (HCy) are obvious.
Thus, we show that the canonical evaluation v.., satisfies the truth
and falsity conditions above. We prove here the truth and falsity

conditions (-;) and (-) and the falsity condition of implication (—

0G3)
For (-1), we must show

a VA Ciff a -V AL

By (1) and (2), we have a - -A iff -A € a iff a ' A.

For (-o), we must show
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a IV A Ciff a KV AL

By (2), we have a IF'") -A iff --A € a. Then, since -B for any
formula B has boolean properties, we have --B € a iff -B & «a.
Therefore, by (2), we have --A € a iff -A & a iff a ¥ A.

For (—0g3), we must show

a FV" A — B iff (i) a F'" --A and a ' B, or
(i) a ¥ A — B.

For the left-to-right direction, let a Iy A — B. By (1) and (2),
we have a IF'"0 A — B iff (A — B) € a iff a '™ -(A —
B). If A—> B & a, we obtain -A A -B & a using A30.
Therefore, by (1) and (2), we obtain a ' --A and a IF"*") B.
If A— B & a we have a ¥'™, A — B. For the right-to-left
direction, we first assume a ', --A and a IF'*") B. Then, using
(1), (2), and A31, we can obtain a IF' A — B. Let a ¥ ", A

— B. (EM) and primeness ensures a I " A — B. []

Let us call a model M, = (U, T, &, v), for Ls, an L; model.
Then, by Lemma 3.6, the canonically defined (Ucan, Scan, =can, Vean)
is an Ls; model. Thus, since, by construction, Gen excludes our
chosen nontheorem A, and the canonical definition of F agrees
with membership, we can state that, for each nontheorem A of Ls,
there is an Ls; model in which A is not Ty F A. It gives us the

weak completeness of L3 as follows.
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Theorem 3.7 (Weak completeness) If Fi; A, then Fp; A.

Next, we prove the strong completeness of Li. As for R in
Anderson et al.(1992), we define A to be an L; consequence of a
theory I' iff for every L; model, whenever a = B for every B €
[ a E A, for all a € U. We say that A is L; deducible from I
iff A is in every Ls-theory containing I'. Where A is a set of
formulas not necessarily a theory, A ~ A can be thought of as
saying that A is deducible from the axioms A. The set of {A: A F
A} is intuitively the smallest theory containing the axioms A, and
we shall label it as Th(4). Then,

Proposition 3.8 Let I' be a theory over L;. If I' 1, A, then
there is a prime theory I" such that I' < [" and A & 1"}

Proof: We prove the case of IUML’; as an example. Let L; be
IUML5. Take an enumeration {A,: n € o} of the well-formed
formulas of L;. We define a sequence of sets by induction as

follows:

Iy = {A: T i A"
T = Th(y U {Aw})  if Ty A FLs A,

[ otherwise.

Let I" be the union of all these I'y's. The primeness of I" can be
proved using the deduction theorem for IUML, i.e., Proposition 2.3
(i), along the usual lines. []
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Thus, using Lemma 3.6 and Proposition 3.8, we can show strong

completeness of L; as follows.

Theorem 3.9 (Strong completeness) Let I' be a theory over Ls.
If F ':L3 A, then F |_L3 A

4. Concluding remark

Yang investigated algebraic  Kripke-style semantics  for
three-valued paraconsistent systems in Yang(2014). We further
investigated non-algebraic set-theoretical Kripke-style semantics for
such systems. But three-valued paraconsistent system having
algebraic Kripke-style semantics but not set-theoretical Kripke-style
semantics, and vice versa, have not yet been studied. This 1s a

problem left in this paper.
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