Set－theoretical Kripke－style semantics for three－valued paraconsistent logic＊

Eunsuk Yang

【Abstract】This paper deals with non－algebraic Kripke－style semantics for three－valued paraconsistent logic：set－theoretical Kripke－style semantics．We first recall two three－valued paraconsistent systems．We next introduce set－theoretical Kripke－style semantics for them．

【Key Words】（Set－theoretical）Kripke－style semantics，algebraic semantics， three－valued logic，paraconsistent logic．

접수일자：2014．10．14 심사 및 수정완료일：2014．11．25 게재확정일：2015．01．12
＊This paper was supported by research funds of Chonbuk National University in 2014．I must thank the referees for their helpful comments．

1. Introduction

The aim of this paper is to introduce non-algebraic Kripke-style semantics, i.e, set-theoretical Kripke-style semantics, for three-valued paraconsistent logic. For this, note that the present author introduced two kinds of (binary) Kripke-style semantics, i.e., algebraic and non-algebraic Kripke-style semantics, for logics with pseudo-Boolean (briefly, pB) and de Morgan (briefly, dM) negations in $\operatorname{Yang}(201+)$. But the author did not consider such semantics for logics with weak-Boolean (briefly, wB) negations. While paraconsistent logics have in general wB negations, which are dual of pB negations such as the intuitionistic and Dummett-Gödel logics H and G have, it is not clear whether such semantics work for three-valued paraconsistent systems.

As its answer, the author also introduced algebraic Kripke-style semantics for three-valued paraconsistent systems in Yang(2014). However, it was an open problem to show that the other kind of binary Kripke-style semantics works for three-valued paraconsistent logic. This paper resolves the remaining problem by introducing non-algebraic set-theoretic Kripke-style semantics for such systems.
The paper is organized as follows. First, in Section 2, we introduce, more exactly recall the systems IUML_{3}^{-}(the IUML_{3} with a wB negation) and $\mathrm{G}^{\mathrm{wB}}{ }_{3}$ (the G_{3} with a wB negation in place of its pB negation) introduced in $\mathrm{Yang}(2014)$. Next, in Section 3, we introduce the other kind of binary relational Kripke-style semantics, non-algebraic set-theoretical Kripke-style semantics, for the above mentioned three-valued systems.

For ease, let us denote wB negation by - and dM negation by \sim. Moreover, for convenience, we adopt notations and terminology similar to those in $\operatorname{Dunn}(2000)$, Metcalfe \& Montagna(2007), Montagna \& Sacchetti(2003; 2004), $\operatorname{Yang}(2012 a ; 2012 b ; 2012 c)$ and assume reader familiarity with them (together with results found therein).

2. Three-valued paraconsistent systems

We base three-valued paraconsistent logics on a countable propositional language with formulas $F m$ built inductively as usual from a set of propositional variables $V A R$, binary connectives \rightarrow, $\&, \wedge, \vee$, and constants $\mathbf{F}, \mathbf{f}, \mathbf{t}$, with a defined connective:

$$
\text { df1. } \mathrm{A} \leftrightarrow \mathrm{~B}:=(\mathrm{A} \rightarrow \mathrm{~B}) \wedge(\mathrm{B} \rightarrow \mathrm{~A})
$$

We further define \mathbf{T} and A_{t} as $\mathbf{F} \rightarrow \mathbf{F}$ and $A \wedge \mathbf{t}$, respectively. We use the axiom systems to provide a consequence relation.

Definition 2.1 (Yang(2014))
(i) IUML_{3}^{-}consists of the following axiom schemes and rules:
df2. -A := $(T \rightarrow A) \rightarrow F$
A1. A \rightarrow A (self-implication, SI)
A2. $(\mathrm{A} \wedge \mathrm{B}) \rightarrow \mathrm{A},(\mathrm{A} \wedge \mathrm{B}) \rightarrow \mathrm{B}(\wedge$-elimination, \wedge - E$)$
A3. $((\mathrm{A} \rightarrow \mathrm{B}) \wedge(\mathrm{A} \rightarrow \mathrm{C})) \rightarrow(\mathrm{A} \rightarrow(\mathrm{B} \wedge \mathrm{C}))(\wedge$-introduction, $\wedge-\mathrm{I})$
A4. $\mathrm{A} \rightarrow(\mathrm{A} \vee \mathrm{B}), \mathrm{B} \rightarrow(\mathrm{A} \vee \mathrm{B})(\vee$-introduction, \vee-I)

A5. $((\mathrm{A} \rightarrow \mathrm{C}) \wedge(\mathrm{B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \vee \mathrm{B}) \rightarrow \mathrm{C})(\vee$-elimination, $\vee-\mathrm{E})$
A6. $(A \& B) \rightarrow(B \& A)(\&-c o m m u t a t i v i t y, ~ \&-C)$
A7. $(\mathrm{A} \& \mathrm{t}) \leftrightarrow \mathrm{A}$ (push and pop, PP)
A8. $\mathbf{F} \rightarrow \mathrm{A}$ (ex falsum quodlibet, EF)
A9. A $\rightarrow \mathbf{T}$ (verum ex quolibet, VE)
A10. $(\mathrm{A} \rightarrow(\mathrm{B} \rightarrow \mathrm{C})) \leftrightarrow((\mathrm{A} \& \mathrm{~B}) \rightarrow \mathrm{C})$ (residuation, RE)
A11. $(\mathrm{A} \rightarrow \mathrm{B}) \rightarrow((\mathrm{B} \rightarrow \mathrm{C}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))$ (suffixing, SF)
A12. $(\mathrm{A} \rightarrow \mathrm{B})_{t} \vee(\mathrm{~B} \rightarrow \mathrm{~A})_{\mathrm{t}}\left(\mathrm{t}\right.$-prelinearity, $\left.\mathrm{PL}_{\mathrm{t}}\right)$
A13. $\sim \sim \mathrm{A} \rightarrow \mathrm{A}$ (double negation elimination, DNE)
A14. (A \& A) $\leftrightarrow A$ (idempotence, ID)
A15. $\mathbf{t} \leftrightarrow \mathbf{f}$ (fixed-point, FP)
A16. $\mathrm{A} \rightarrow(\sim \mathrm{A} \rightarrow \mathrm{A})(\mathrm{RM} 3(1))$
A17. $\mathrm{A} \vee(\mathrm{A} \rightarrow \mathrm{B})(\mathrm{RM} 3(2))$
A18. --A \rightarrow A (classical double negation, CIDN)
A19. $\mathrm{A} \rightarrow(\mathrm{B} \vee-\mathrm{B})$ (triviality, TRI)
A20. $(\mathrm{A} \rightarrow \mathrm{B}) \rightarrow(-\mathrm{B} \rightarrow-\mathrm{A})$ (contraposition, $\left.\mathrm{CP}^{-}\right)$
A21. $(\mathrm{A} \wedge-\mathrm{B}) \rightarrow-(\mathrm{A} \rightarrow \mathrm{B})(-1)$
A22. $\sim \mathrm{A} \rightarrow-\mathrm{A}(-2)$
A23. -(A \& B) $\rightarrow((\mathrm{A} \wedge \mathrm{B}) \rightarrow(-\mathrm{A} \wedge-\mathrm{B}))(-3)$
A24. $-(\mathrm{A} \& \mathrm{~B}) \rightarrow(-\mathrm{A} \rightarrow \mathrm{B})(-4)$
A25. $((\mathrm{A} \rightarrow \mathrm{B}) \wedge-(\mathrm{A} \rightarrow \mathrm{B})) \rightarrow(\mathrm{A} \wedge-\mathrm{B})\left(\mathrm{IUML}^{-} 3\right)$
$\mathrm{A} \rightarrow \mathrm{B}, \mathrm{A} \vdash \mathrm{B}$ (modus ponens, mp)
$\mathrm{A}, \mathrm{B} \vdash \mathrm{A} \wedge \mathrm{B}$ (adjunction, adj)
(ii) $\mathrm{G}^{\mathrm{wB}}{ }_{3}$ is A1-A12, A14, A18, A19, (mp), (adj) plus

A26. $\mathrm{A} \rightarrow(\mathrm{B} \rightarrow \mathrm{A})$ (weakening, W)
A27. -(A $\wedge \mathrm{B}) \leftrightarrow(-\mathrm{A} \vee-\mathrm{B})(\mathrm{DM1})$
A28. - $(\mathrm{A} \vee \mathrm{B}) \leftrightarrow(-\mathrm{A} \wedge-\mathrm{B})\left(\mathrm{DM} 2^{\circ}\right)$

A29. $((\mathrm{A} \rightarrow-(\mathrm{C} \vee-\mathrm{C})) \rightarrow \mathrm{B}) \rightarrow(((\mathrm{B} \rightarrow \mathrm{A}) \rightarrow \mathrm{B}) \rightarrow \mathrm{B})(\mathrm{G} 3)$
A30. $((\mathrm{A} \rightarrow \mathrm{B}) \wedge-(\mathrm{A} \rightarrow \mathrm{B})) \rightarrow(--\mathrm{A} \wedge-\mathrm{B})\left(\mathrm{G}^{-} 3(1)\right)$
A31. $(--\mathrm{A} \wedge-\mathrm{B}) \rightarrow-(\mathrm{A} \rightarrow \mathrm{B})\left(\mathrm{G}^{-3}(2)\right)$

For easy reference, we let Ls_{3} be the set of the three-valued systems introduced in Definition 2.1.

Definition 2.2 $\mathrm{Ls}_{3}=\left\{\mathrm{IUML}_{3}^{-}, \mathrm{G}^{\mathrm{wB}}{ }_{3}\right\}$.

A theory is a set of formulas closed under consequence relation. A proof in a theory Γ over $\mathrm{L}_{3}\left(\in \mathrm{Ls}_{3}\right)$ is a sequence s of formulas such that each element of s is either an axiom of L_{3}, a member of Γ, or is derivable from previous elements of s by means of a rule of L_{3}. $\Gamma \vdash \mathrm{A}$, more exactly $\Gamma \vdash_{\mathrm{L}_{3}} \mathrm{~A}$, means that A is provable in Γ with respect to (w.r.t.) L_{3}, i.e., there is an L_{3}-proof of A in Γ. A theory Γ is trivial if $\Gamma \vdash \mathrm{F}$; otherwise, it is non-trivial.
The deduction theorems for L_{3} are as follows:

Proposition 2.3 (Yang(2014)) Let Γ be a theory over L_{3} and A, B be formulas.
(i) $\Gamma \cup\{\mathrm{A}\} \vdash_{\mathrm{wML}_{3}} \mathrm{~B}$ iff $\Gamma \vdash_{\mathrm{wML}_{3}} \mathrm{~A}_{\mathrm{t}} \rightarrow \mathrm{B}$.
(ii) $\Gamma \cup\{\mathrm{A}\} \vdash \vdash_{\mathrm{G}^{\mathrm{mig}}}^{3} \mathrm{~B}$ iff $\Gamma \vdash \mathrm{G}^{\mathrm{me}}, \mathrm{A} \rightarrow \mathrm{B}$.

The following formulas can be proved straightforwardly.

Proposition 2.4 (Yang(2014))
(i) $\mathrm{L}_{3}\left(\in \mathrm{Ls}_{3}\right)$ proves:
(1) $(\mathrm{A} \&(\mathrm{~B} \& \mathrm{C})) \rightarrow((\mathrm{A} \& \mathrm{~B}) \& C)$ (associativity, AS)
(2) $(\mathrm{A} \rightarrow \mathrm{B}) \vee(\mathrm{B} \rightarrow \mathrm{A})$ (prelinearity, PL)
(3) $\mathrm{A} \vee-\mathrm{A}$ (excluded middle, EM)
(ii) IUML_{3}^{-}proves:
(1) $\sim \sim \mathrm{A} \leftrightarrow \mathrm{A}$ (double negation, DN)
(iii) $\mathrm{G}^{\mathrm{wB}}{ }_{3}$ proves (CP) and:
(1) $\mathbf{t} \leftrightarrow \mathbf{T}$ (INT).

3. Set-theoretical Kripke-style semantics

3.1. Semantics

Here, we consider non-algebraic set-theoretical and binary relational Kripke-style semantics for L_{3}. Let us regard an evaluation to be a function from sentences to non-empty sets of two truth values, including the set having both truth values to account for overdetermination. We regard a three-valued matrix as a lattice and call it the lattice 3_{B}; we denote each set of value(s) $\{0\}$, $\{1\}$, and $\{0,1\}$ by F, T, and B, respectively (see Figure 1).

Figure 1: The lattice $\mathbf{3}_{\mathrm{B}}$

Each matrix for $\sim,-, \wedge, \vee$, and \rightarrow can be defined as in Table 1 (+ indicates the designated value(s)). ${ }^{1)}$

-	
$\mathrm{T}+$	F
B	T
F	T

\sim	
$\mathrm{T}+$	F
$\mathrm{B}+$	T
F	T

\wedge	T	B	F
$\mathrm{T}+$	T	B	F
$\mathrm{B}(+)$	B	B	F
F	F	F	F

V	T	B	F
$T+$	T	T	T
$B(+)$	T	B	B
F	T	B	F

$\rightarrow_{\mathrm{G} 3}$	T	B	F
$\mathrm{~T}+$	T	B	F
B	T	T	F
F	T	T	T

$\rightarrow_{\text {RM3 }}$	T	B	F
$\mathrm{T}+$	T	F	F
$\mathrm{B}+$	T	B	F
F	T	T	T

Table 1: Three-valued matrices for evaluations of L_{3}

Note that, in Table 1, we take $\rightarrow_{\mathrm{G} 3}$ and $\rightarrow_{\mathrm{RM} 3}$ for $\mathrm{G}^{\mathrm{wB}}{ }_{3}$ and IU ML_{3}^{-}, respectively.

Next, as in Dunn(2000), let us define evaluations. An evaluation into $\mathbf{3}_{\mathrm{B}}$ is a function v from sentences into $\mathbf{3}_{\mathrm{B}}$ such that $\mathrm{v}(-\mathrm{A})=$

1) We do not have to introduce the matrix for \& because \& is \wedge in $\mathbf{G}^{\mathrm{wB}}{ }_{3}$, and definable in IUML_{3}^{-}using \sim and \rightarrow connectives. Note that, while the matrices for $\mathrm{G}^{\mathrm{wB}}{ }_{3}$ have one desiganted element T , the mattrices for $\mathbf{I U M L}{ }_{3}$ have the two T, B. By (+), we ambiguously express these in the matrices for \wedge and \vee.
$-\mathrm{v}(\mathrm{A}), \mathrm{v}(\sim \mathrm{A})=\sim \mathrm{v}(\mathrm{A}), \mathrm{v}(\mathrm{A} \wedge \mathrm{B})=\mathrm{v}(\mathrm{A}) \wedge \mathrm{v}(\mathrm{B}), \mathrm{v}(\mathrm{A} \vee \mathrm{B})=$ $v(A) \vee v(B)$, and $v(A \rightarrow B)=v(A) \rightarrow v(B)$. As the labeling of Figure 1 reveals, we can view $\mathbf{3}_{B}$ as consisting of subsets of the usual two truth values. Thus, equivalently, an evaluation can be regarded as a map v from sentences into the powerset of $\{1,0\}$ (see below). For a total evaluation, we always have at least one of $0,1 \in \mathrm{v}(\mathrm{A})$. We write $\Vdash^{\mathrm{v}}{ }_{1} \mathrm{~A}$ for $1 \in \mathrm{v}(\mathrm{A})$ and $\Vdash^{\mathrm{v}}{ }_{0} \mathrm{~A}$ for $0 \in$ $\mathrm{v}(\mathrm{A})$. Like the two-valued matrix for classical logic CL, we call a matrix characteristic for a calculus L when a formula A is provable if it assumes a designated value for every assignment of values to its variables, i.e., if L is weak complete w.r.t. the matrix (see e.g. Dunn(2000) and Dunn \& Hardegree(2001).

Definition 3.1 (Dunn(2000)) A binary relational Kripke frame (briefly a frame) is a structure $\mathbf{S}=(\mathrm{U}, \zeta, \sqsubseteq)$, where $\zeta \in \mathrm{U}$ and \sqsubseteq is a partial order (p.o.) on U.\}

As X in Section 3, we regard U as a set of nodes. Then, ζ is the base state of information, and it further does not hurt to require that ζ be the least element of U under \sqsubseteq. By \sum, we denote the class of all frames. For L_{3}, we need to consider frames where \sqsubseteq is connected in the sense that, for any $a, \beta \in U$, either $a \sqsubseteq \beta$ or β \sqsubseteq a. A linear order (l.o.) is a connected partial order. Then a linear frame is a structure $\mathbf{S}=(\mathrm{U}, \zeta, \sqsubseteq)$, where $\zeta \in \mathrm{U}$ and \sqsubseteq is an 1.o. on U.

We assume that there are denumerably many atomic sentences, and that the class of formulas $F m$ is defined inductively from these
in the usual manner, utilizing the connectives $-, \sim, \wedge, \vee$, and \rightarrow. A (parameterized) L_{3}-evaluation on a linear frame \mathbf{S} is a function $\mathrm{v}(\mathrm{A}, \mathrm{a})$ from $\mathrm{Fm} \times \mathrm{U}$ into $\mathbf{3}_{\mathrm{B}}$ subject to the conditions below. We denote the set of these evaluations as $\mathbf{V a l}_{\mathrm{L} 3}$, and we write a $\Vdash^{\mathrm{v}}{ }_{1} \mathrm{~A}$ for 1 in $v(A, a)$ and $a \Vdash^{v}{ }_{0} A$ for 0 in $v(A, a)$. In context, we often leave the superscript v implicit.
(Atomic Hereditary Conditions (AHC)) for any atomic sentence p , $\left(\mathrm{HC}_{1}\right) a \Vdash^{\mathrm{v}}{ }_{1} \mathrm{p}$ and $\mathrm{a} \sqsubseteq \beta \Rightarrow \beta \Vdash^{\mathrm{v}}{ }_{1} \mathrm{p}$;
$\left(\mathrm{HC}_{0}\right) a \Vdash^{\mathrm{v}}{ }_{0} \mathrm{p}$ and $\mathrm{a} \sqsubseteq \beta \Rightarrow \beta \Vdash^{v}{ }_{0} \mathrm{p}$.

The truth and falsity conditions for propositional constants $\mathbf{t}, \mathbf{f}, \mathbf{T}$, F, and compound sentences are then given by the following clauses:

$$
\begin{aligned}
& \left(\mathrm{tf}_{1}\right) a \Vdash_{1} \mathbf{t} \Leftrightarrow a \Vdash_{1} \mathbf{f} \text {; } \\
& \left(\mathrm{tf}_{0}\right) \mathrm{a} \Vdash_{0} \mathbf{t} \Leftrightarrow \mathrm{a} \Vdash_{0} \mathbf{f} \text {; } \\
& \left(T_{1}\right) a \Vdash_{1} T \text { always; } \\
& \left(T_{0}\right) a \Vdash_{0} T \text { never; } \\
& \left(\perp_{1}\right) \text { a } \Vdash_{1} \text { F never; } \\
& \left(\perp_{0}\right) \text { a } \Vdash_{0} \mathbf{F} \text { always; } \\
& (-1) a \Vdash_{1-A} \Leftrightarrow a \Vdash_{0} A \text {; } \\
& (-0) a \Vdash_{0}-\mathrm{A} \Leftrightarrow a \Vdash_{0} \mathrm{~A} \text {; } \\
& \left(\sim_{1}\right) a \Vdash_{1} \sim \mathrm{~A} \Leftrightarrow a \Vdash_{0} A \text {; } \\
& \left(\sim_{0}\right) a \Vdash_{0} \sim \mathrm{~A} \Leftrightarrow \mathrm{a} \Vdash_{1} \mathrm{~A} \text {; } \\
& \left(\wedge_{1}\right) \mathrm{a} \Vdash_{1} \mathrm{~A} \wedge \mathrm{~B} \Leftrightarrow \mathrm{a} \Vdash_{1} \mathrm{~A} \text { and } \mathrm{a} \Vdash_{1} \mathrm{~B} ; \\
& \left(\wedge_{0}\right) \mathrm{a} \Vdash_{0} \mathrm{~A} \wedge \mathrm{~B} \Leftrightarrow \mathrm{a} \Vdash_{0} \mathrm{~A} \text { or } \mathrm{a} \Vdash_{0} \mathrm{~B} ; \\
& \left(\vee_{1}\right) a \Vdash_{1} \mathrm{~A} \vee \mathrm{~B} \Leftrightarrow \mathrm{a} \Vdash_{1} \mathrm{~A} \text { or } \mathrm{a} \Vdash_{1} \mathrm{~B} \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \left(V_{0}\right) a \Vdash_{0} \mathrm{~A} V \mathrm{~B} \Leftrightarrow \mathrm{a} \Vdash_{0} \mathrm{~A} \text { and } \mathrm{a} \Vdash_{0} \mathrm{~B} ; \\
& \left(\rightarrow_{1}\right) \mathrm{a} \Vdash_{1} \mathrm{~A} \rightarrow \mathrm{~B} \Leftrightarrow \text { (i) for all } \beta \sqsupseteq \mathrm{a},\left(\beta \Vdash_{1} \mathrm{~A} \Rightarrow \beta \Vdash_{1} \mathrm{~B}\right) \text {, } \\
& \text { and } \\
& \text { (ii) for all } \beta \sqsupseteq a,\left(\beta \Vdash_{0} B \Rightarrow \beta \Vdash_{0} A\right) \text {; } \\
& \left(\rightarrow_{0 G 3}\right) a \Vdash_{0} \mathrm{~A} \rightarrow \mathrm{~B} \Leftrightarrow \text { (i) } \mathrm{a} \Vdash_{0} \text { - A, i.e., for all } \beta \sqsupseteq \mathrm{a}, \beta \Vdash_{0} \\
& \text { A, and } a \Vdash_{0} B \text {, or } \\
& \text { (ii) } \mathrm{a} \nVdash_{1} \mathrm{~A} \rightarrow \mathrm{~B} \text {; } \\
& \left(\rightarrow_{\text {ORM3 }}\right) \mathrm{a} \Vdash_{0} \mathrm{~A} \rightarrow \mathrm{~B} \Leftrightarrow \text { (i) } \mathrm{a} \Vdash_{1} \mathrm{~A} \text { and } \mathrm{a} \Vdash_{0} \mathrm{~B} \text {, or } \\
& \text { (ii) } \mathrm{a} \Vdash_{1} \mathrm{~A} \rightarrow \mathrm{~B} \text {. }
\end{aligned}
$$

Note that, w.r.t. the truth condition of implication, we take $\left(\rightarrow_{1}\right)$ for L_{3}, but w.r.t. the falsity condition of implication, we take $\left(\rightarrow_{0 G 3}\right)$ and $\left(\rightarrow_{0 R M 3}\right)$ for $\mathbf{G}^{\mathrm{wB}}{ }_{3}$ and $\mathbf{I U M L}_{3}^{-}$, respectively. More exactly, the $\mathrm{G}^{\mathrm{wB}}{ }_{3}$-evaluation has the conditions $(-1),(-0),\left(\wedge_{1}\right),\left(\wedge_{0}\right),\left(\vee_{1}\right),\left(\vee_{0}\right)$, $\left(\rightarrow_{1}\right)$, and $\left(\rightarrow_{0 G 3}\right)$; the $\mathbf{I U M L} \mathbf{M}_{3}^{-}$-evaluation has the conditions $\left(\mathrm{tf}_{1}\right)$, $\left(\mathrm{tf}_{0}\right),\left(\top_{1}\right),\left(\top_{0}\right),\left(\perp_{1}\right),\left(\perp_{0}\right),(-1),(-0),\left(\sim_{1}\right),\left(\sim_{0}\right),\left(\wedge_{1}\right),\left(\wedge_{0}\right),\left(\vee_{1}\right)$, $\left(\vee_{0}\right),\left(\rightarrow_{1}\right)$, and $\left(\rightarrow_{0 \text { RM3 }}\right)$.

A sentence A is L_{3}-valid in a frame $\mathbf{S}=(\mathrm{U}, \zeta, \sqsubseteq)$ iff, for all v in $\mathbf{V a l}_{\mathrm{L} 3}, \zeta \Vdash^{\mathrm{v}}{ }_{1} \mathrm{~A}$. Let Θ be the class of linear frames. A sentence A is L_{3}-valid, in symbols $\models_{\text {L3 }} A$, iff, for all $\mathbf{S} \in \Theta$, A is L_{3}-valid in \mathbf{S}.

Given a class of $\vDash \mathbf{M}_{\text {L3 }}$ for L_{3}, we can define (simple truth preserving, corresponding to \vDash_{1},) consequence as follows:

Definition $3.2 \Gamma \vDash_{\mathrm{L} 3} A$ iff, for all $\vDash \mathrm{M}=(\mathrm{U}, \zeta$, $\sqsubseteq, \mathrm{v}) \in$ $\mathbf{M}_{\mathrm{L} 3}$, if $\zeta \Vdash^{\mathrm{v}}{ }_{1} \mathrm{~B}$ for all $\mathrm{B} \in \Gamma$, then $\left.\zeta \Vdash^{\mathrm{v}}{ }_{1} \mathrm{~A}.\right\}$

3.2. Soundness and completeness for L_{3}

First we note the following lemma, which is useful for the verification of each instance of the axiom schemes in Proposition 3.4 below:

Lemma 3.3 (Hereditary Lemma) For any sentence A, (i) if $a \Vdash^{v}{ }_{1} \mathrm{~A}$ and $\mathrm{a} \sqsubseteq \beta$, then $\beta \Vdash^{v}{ }_{1} \mathrm{~A}$, and (ii) if $a \Vdash^{v}{ }_{0} \mathrm{~A}$ and $a \sqsubseteq \beta$, then $\beta \Vdash^{v}{ }_{0} \mathrm{~A}$.

Proof: See Hereditary Lemma in Dunn(1976) and Lemmas 1 and 5 in $\operatorname{Yang}(2012 a)$.

Proposition 3.4 (Soundness) If $\vdash_{\text {L3 }} A$, then $\vDash_{\text {L3 }}$. A.

Proof: The rules of L_{3} are (mp) and (adj). Both of these obviously preserve truth, i.e., L_{3}-validity. (For the former, look at $\left(\rightarrow_{1}\right)$ and recall that \sqsubseteq is reflexive; for the latter, look at $\left(\wedge_{1}\right)$.) Thus, the proof reduces to verification of axioms for L_{3}. We verify A18 and A30 as examples.

For A18, we must show that (i) $a \Vdash_{1}$--A only if $a \Vdash_{1} \mathrm{~A}$ and (ii) a $\Vdash_{0} \mathrm{~A}$ only if a $\Vdash_{0}-$-A. For (i), let $a \Vdash_{1}$--A. By (-1) and (-0), we have $a \Vdash_{1}$--A iff $a \Vdash_{0}$-A iff $a \Vdash_{0} A$. Then, since the evaluation is total, we obtain $a \Vdash_{1}$ A. The proof for (ii) is analogous.

For A30, we must show that (i) $a \Vdash_{1}(\mathrm{~A} \rightarrow \mathrm{~B}) \wedge-(\mathrm{A} \rightarrow \mathrm{B})$ only if $a \Vdash_{1}-$ - $\wedge \wedge-B$ and (ii) $a \Vdash_{0}-$-A $\wedge-B$ only if $a \Vdash_{0}(A$ $\rightarrow \mathrm{B}) \wedge-(\mathrm{A} \rightarrow \mathrm{B})$. For (i), let $\mathrm{a} \Vdash_{1}(\mathrm{~A} \rightarrow \mathrm{~B}) \wedge-(\mathrm{A} \rightarrow \mathrm{B})$. By
$\left(\wedge_{1}\right)$, we have $\mathrm{a} \Vdash_{1} \mathrm{~A} \rightarrow \mathrm{~B}$ and $\mathrm{a} \Vdash_{1}-(\mathrm{A} \rightarrow \mathrm{B})$. By $\left(-{ }_{-1}\right)$ and $(\rightarrow$ 0G3), we have $a \Vdash_{1}-(\mathrm{A} \rightarrow \mathrm{B})$ iff $\mathrm{a} \Vdash_{0} \mathrm{~A} \rightarrow \mathrm{~B}$ iff $\mathrm{a} \Vdash_{0}-\mathrm{A}$ and $\mathrm{a} \Vdash_{0} \mathrm{~B}$ iff $\mathrm{a} \Vdash_{1}-\mathrm{A}$ and $\mathrm{a} \Vdash_{1}-\mathrm{B}$. Therefore, by $\left(\wedge_{1}\right)$, we have $a \Vdash_{1}--A \wedge-B$. For (ii), let $a \Vdash_{0}--A \wedge-B$. By $\left(\wedge_{0}\right)$ and (-0), we have $a \Vdash_{0}--A \wedge-B$ iff $a \Vdash_{0}-$-A or $a \Vdash_{0}-B$ iff $a \Vdash_{0}-A$ or a \Vdash_{0} B. Then, by $\left(\rightarrow_{0 G 3}\right)$ and (-0), we further have $a \nVdash_{0}-\mathrm{A}$ or $\mathrm{a} \Vdash_{0}$ B iff $\mathrm{a} \Vdash_{0} \mathrm{~A} \rightarrow \mathrm{~B}$ iff $\mathrm{a} \Vdash_{0}-(\mathrm{A} \rightarrow \mathrm{B})$. Then, since $\mathrm{a} \Vdash_{0}(\mathrm{~A} \rightarrow$ B) $\wedge-(\mathrm{A} \rightarrow \mathrm{B})$ iff $\mathrm{a} \Vdash_{0}(\mathrm{~A} \rightarrow \mathrm{~B})$ or $a \Vdash_{0}-(\mathrm{A} \rightarrow \mathrm{B})$ by $\left(\wedge_{0}\right)$, we have $a \Vdash_{0}(\mathrm{~A} \rightarrow \mathrm{~B}) \wedge-(\mathrm{A} \rightarrow \mathrm{B})$.

The verification of other axiom schemes for L_{3} is left to the reader.

We give completeness results for L_{3} by using the well-known Henkin-style proofs for modal logic, but with prime theories in place of maximal theories. We call a theory Γ prime if, for each pair A, B of formulas such that $\Gamma \vdash A \vee B, \Gamma \vdash A$ or $\Gamma \vdash B$. By an L_{3}-theory, we mean a theory Γ closed under rules of L_{3}. As in relevance logic, by a regular L_{3}-theory, we mean an L_{3}-theory containing all of the theorems of L_{3}. Since we have no use of irregular theories, from now on, by an L_{3}-theory, we henceforth mean a regular L_{3}-theory.

Moreover, where Γ is a prime L_{3}-theory, we define the canonical L_{3} frame determined by Γ to be a structure $\mathbf{S}=\left(\mathrm{U}_{\mathrm{can}}, \zeta_{\mathrm{can}}, \sqsubseteq_{\mathrm{can}}\right)$, where $\zeta_{\text {can }}$ is the $\Gamma, \mathrm{U}_{\text {can }}$ is the set of prime L_{3} theories extending ζ can, and $\sqsubseteq_{\text {can }}$ is \subseteq restricted to $\mathrm{U}_{\text {can }}$. Note that the base $\zeta_{\text {can }}$ is constructed as the prime L_{3}-theory that excludes nontheorems of L_{3}, i.e., excludes A such that not $\vdash_{\mathrm{L} 3}$ A. The partial orderedness and
the linear orderedness of the canonical L_{3} frame depend on \subseteq restricted on $\mathrm{U}_{\text {can }}$. Then, first, the following is obvious.

Proposition 3.5 The canonical L_{3} frame is linearly ordered.

Proof: By Proposition 26 in $\operatorname{Dunn}(2000)$.

Next, we define a canonical evaluation as follows:
(1) $1 \in \mathrm{v}_{\mathrm{can}}(\mathrm{A}, \mathrm{a}) \Leftrightarrow \mathrm{A} \in \mathrm{a}$;
(2) $0 \in \mathrm{v}_{\text {can }}(\mathrm{A}, \mathrm{a}) \Leftrightarrow-\mathrm{A}(\sim \mathrm{A}$ resp $) \in \mathrm{a}$.

This definition allows us to state the following lemma.

Lemma 3.6 (Canonical Evaluation Lemma) $v_{c a n}$ is an evaluation.

Proof: The Hereditary Conditions $\left(\mathrm{HC}_{1}\right)$ and $\left(\mathrm{HC}_{0}\right)$ are obvious. Thus, we show that the canonical evaluation $\mathrm{V}_{\text {can }}$ satisfies the truth and falsity conditions above. We prove here the truth and falsity conditions (-1) and (-0) and the falsity condition of implication $(\rightarrow$ 0G3)

For (-1), we must show

$$
\mathrm{a} \Vdash^{\mathrm{Vcan}}{ }_{1} \text {-A iff } \mathrm{a} \Vdash^{\mathrm{Vcan}} \mathrm{~A} .
$$

By (1) and (2), we have $a \Vdash^{V c a n} 1-A$ iff $-A \in a$ iff $a \Vdash^{V c a n}{ }_{0} A$. For (-0), we must show

$$
a \Vdash^{\mathrm{Vcan}}{ }_{0}-\mathrm{A} \text { iff } \mathrm{a} \nVdash^{\mathrm{Vcan}}{ }_{0} \mathrm{~A} .
$$

By (2), we have $a \Vdash^{\text {Vcan }}{ }_{0}-\mathrm{A}$ iff --A $\in a$. Then, since -B for any formula B has boolean properties, we have $--B \in a$ iff $-B \notin a$. Therefore, by (2), we have --A $\in a$ iff -A $\notin a$ iff $a \Vdash^{\text {Vcan }}{ }_{0} A$. For ($\rightarrow_{\mathrm{OG} 3}$), we must show

$$
\begin{gathered}
\mathrm{a} \Vdash^{\text {Vcan }} \mathrm{A} \rightarrow \mathrm{~B} \text { iff (i) } \mathrm{a} \Vdash^{\mathrm{V}_{\mathrm{Van}}}{ }_{1}-\mathrm{A} \text { and } \mathrm{a} \Vdash^{\mathrm{V}_{\text {can }} \mathrm{B}, \text { or }} \\
\text { (ii) } \mathrm{a} \Vdash^{\mathrm{Vcan}}{ }_{1} \mathrm{~A} \rightarrow \mathrm{~B} .
\end{gathered}
$$

For the left-to-right direction, let $\mathrm{a} \Vdash^{\mathrm{Vcan}}{ }_{0} \mathrm{~A} \rightarrow \mathrm{~B}$. By (1) and (2), we have $\mathrm{a} \Vdash^{\text {Vcan }}{ }_{0} \mathrm{~A} \rightarrow \mathrm{~B}$ iff $-(\mathrm{A} \rightarrow \mathrm{B}) \in \mathrm{a}$ iff $\mathrm{a} \Vdash^{\text {Vcan }}{ }_{1}-(\mathrm{A} \rightarrow$ B). If $\mathrm{A} \rightarrow \mathrm{B} \in \mathrm{a}$, we obtain $-\mathrm{A} \wedge-\mathrm{B} \in a$ using A30. Therefore, by (1) and (2), we obtain $a \Vdash^{\mathrm{Vcan}}{ }_{1}$--A and $a \Vdash^{\mathrm{Vcan}}{ }_{0} \mathrm{~B}$. If $\mathrm{A} \rightarrow \mathrm{B} \notin \mathrm{a}$, we have $\mathrm{a} \Vdash^{\mathrm{Vcan}}{ }_{1} \mathrm{~A} \rightarrow \mathrm{~B}$. For the right-to-left direction, we first assume $a \Vdash^{\mathrm{V} \text { can }}{ }_{1}--\mathrm{A}$ and $\mathrm{a} \Vdash^{\mathrm{V}_{\text {can }}}{ }_{0} \mathrm{~B}$. Then, using (1), (2), and A31, we can obtain $a \Vdash^{\text {Vcan }}{ }_{0} \mathrm{~A} \rightarrow \mathrm{~B}$. Let $a \Vdash^{\mathrm{V} \text { can }}{ }_{1} \mathrm{~A}$ \rightarrow B. (EM) and primeness ensures $a \Vdash^{\mathrm{Vcan}}{ }_{0} \mathrm{~A} \rightarrow \mathrm{~B}$.

Let us call a model M , $=(\mathrm{U}, \zeta, \sqsubseteq, \mathrm{v})$, for L_{3}, an L_{3} model. Then, by Lemma 3.6, the canonically defined ($\mathrm{U}_{\mathrm{can}}, \zeta_{\text {can }}$, $\sqsubseteq_{\text {can }} \mathrm{V}_{\mathrm{can}}$) is an L_{3} model. Thus, since, by construction, $\zeta_{\text {can }}$ excludes our chosen nontheorem A, and the canonical definition of \vDash agrees with membership, we can state that, for each nontheorem A of L_{3}, there is an L_{3} model in which A is not $\zeta_{\text {can }} \vDash A$. It gives us the weak completeness of L_{3} as follows.

Theorem 3.7 (Weak completeness) If $\vDash_{\mathrm{L} 3} \mathrm{~A}$, then $\vdash_{\mathrm{L} 3} \mathrm{~A}$.

Next, we prove the strong completeness of L_{3}. As for \mathbf{R}^{+}in Anderson et al.(1992), we define A to be an L_{3} consequence of a theory Γ iff for every L_{3} model, whenever $a \vDash B$ for every $B \in$ $\Gamma, a \vDash \mathrm{~A}$, for all $\mathrm{a} \in \mathrm{U}$. We say that A is L_{3} deducible from Γ iff A is in every L_{3}-theory containing Γ. Where Δ is a set of formulas not necessarily a theory, $\Delta \vdash \mathrm{A}$ can be thought of as saying that A is deducible from the axioms Δ. The set of $\{\mathrm{A}: \Delta \vdash$ A\} is intuitively the smallest theory containing the axioms Δ, and we shall label it as $\operatorname{Th}(\Delta)$. Then,

Proposition 3.8 Let Γ be a theory over L_{3}. If $\Gamma \nvdash_{\mathrm{L} 3} \mathrm{~A}$, then there is a prime theory $\Gamma^{\prime \prime}$ such that $\Gamma \subseteq \Gamma^{\prime}$ and $\mathrm{A} \notin \Gamma^{\prime}$.\}

Proof: We prove the case of IUML_{3}^{-}as an example. Let L_{3} be IUML ${ }_{3}$. Take an enumeration $\left\{\mathrm{A}_{\mathrm{n}}: \mathrm{n} \in \omega\right\}$ of the well-formed formulas of L_{3}. We define a sequence of sets by induction as follows:

$$
\begin{gathered}
\Gamma_{0}=\left\{\mathrm{A}^{\prime}: \Gamma \vdash_{\mathrm{L} 3} \mathrm{~A}^{\prime}\right\} . \\
\Gamma_{\mathrm{i}+1}=\mathrm{Th}\left(\Gamma_{\mathrm{i}} \cup\left\{\mathrm{~A}_{\mathrm{i}+1}\right\}\right) \quad \\
\text { if } \Gamma_{\mathrm{i}}, \mathrm{~A}_{\mathrm{i}+1} \nvdash_{\mathrm{L} 3} \mathrm{~A}, \\
\Gamma_{\mathrm{i}}
\end{gathered} \quad \text { otherwise. } \quad .
$$

Let $\Gamma^{\prime \prime}$ be the union of all these $\Gamma_{\mathrm{n}}{ }^{\prime}$ s. The primeness of $\Gamma^{\prime \prime}$ can be proved using the deduction theorem for $\mathbf{I U M L}_{3}{ }_{3}$, i.e., Proposition 2.3 (i), along the usual lines.

Thus, using Lemma 3.6 and Proposition 3.8, we can show strong completeness of L_{3} as follows.

Theorem 3.9 (Strong completeness) Let Γ be a theory over L_{3}. If $\Gamma \vDash_{\mathrm{L} 3} \mathrm{~A}$, then $\Gamma \vdash_{\mathrm{L} 3} \mathrm{~A}$.
4. Concluding remark

Yang investigated algebraic Kripke-style semantics for three-valued paraconsistent systems in $\operatorname{Yang}(2014)$. We further investigated non-algebraic set-theoretical Kripke-style semantics for such systems. But three-valued paraconsistent system having algebraic Kripke-style semantics but not set-theoretical Kripke-style semantics, and vice versa, have not yet been studied. This is a problem left in this paper.

References

Anderson, A. R., Belnap, N. D., and Dunn, J. M. (1992), Entailment: The Logic of Relevance and Necessity, vol 2, Princeton, Princeton Univ. Press.
Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic, pp. 673-704.
Dunn, J. M. (1976), "A Kripke-style semantics for R-Mingle using a binary accessibility relation", Studia Logica, 35, pp. 163-172.

Dunn, J. M. (1986), "Relevance logic and entailment", In D. Gabbay and F. Guenthner (eds.), Dordrecht, Handbook of Philosophical Logic, vol III, D. Reidel Publ. Co., pp. 117-224.
Dunn, J. M.(2000), "Partiality and its Dual", Studia Logica, 66, pp. 5-40.

Dunn, J. M. and Hardegree, G. (2001), Algebraic Methods in Philosophical Logic, Oxford, Oxford Univ Press.
Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. (2007), Residuated lattices: an algebraic glimpse at substructural logics, Amsterdam, Elsevier.
Metcalfe, G., and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864.
Montagna, F. and Ono, H. (2002), "Kripke semantics, undecidability and standard completeness for Esteva and Godo's Logic MTL $\forall "$, Studia Logica, 71, pp. 227-245.

Montagna, F. and Sacchetti, L. (2003), "Kripke-style semantics for many-valued logics", Mathematical Logic Quaterly, 49, pp. 629-641.

Montagna, F. and Sacchetti, L. (2004), "Corrigendum to "Kripke-style semantics for many-valued logics", Mathematical Logic Quaterly, 50, pp. 104-107.
Tsinakis, C., and Blount, K. (2003), "The structure of residuated lattices", International Journal of Algebra and Computation, 13, pp. 437-461.
Yang, E. (2012a), "(Star-based) three-valued Kripke-style semantics for pseudo- and weak-Boolean logics", Logic Journal of the IGPL, 20, pp. 187-206.
Yang, E. (2012b), "Kripke-style semantics for UL", Korean Journal of Logic, 15/1, pp. 1-15.
Yang, E. (2012c), "R, fuzzy R, and algebraic Kripke-style semantics", Korean Journal of Logic, 15/2, pp. 207-221.
Yang, E. (2013), "R and Relevance principle revisited", Journal of Philosophical Logic, 42, pp. 767-782.
Yang, E. (2014), "Algebraic Kripke-style semantics for three-valued paraconsistent logic", Korean Journal of Logic, 17/3, pp. 441-460.
Yang, E. (201+), "Two kinds of (binary) Kripke-style semantics for three-valued logic", Logique et Analyse, To appear.

전북대학교 철학과, 비판적사고와논술연구소
Department of Philosophy \& Institute of Critical Thinking and Writing, Chonbuk National University eunsyang@jbnu.ac.kr

3 치 초일관 논리를 위한 집합-이론적 크립키형 의미론

이 글에서 우리는 3 치 초일관 논리를 위한 비대수적 집합-이론적 크립키형 의미론을 다룬다. 이를 위하여 먼저 두 3치 체계를 소개 한다. 그리고 그 다음에 이에 상응하는 집합-이론적 크립키형 의미 론을 소개한다.

주요어: (집합-이론적) 크립키형 의미론, 대수적 의미론, 3 치 논 리, 초일관 논리

