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1. Introduction

The aim of this paper is to introduce non-algebraic Kripke-style 
semantics, i.e, set-theoretical Kripke-style semantics, for 
three-valued paraconsistent logic. For this, note that the present 
author introduced two kinds of (binary) Kripke-style semantics, 
i.e., algebraic and non-algebraic Kripke-style semantics, for logics 
with pseudo-Boolean (briefly, pB) and de Morgan (briefly, dM) 
negations in Yang(201+). But the author did not consider such 
semantics for logics with weak-Boolean (briefly, wB) negations. 
While paraconsistent logics have in general wB negations, which 
are dual of pB negations such as the intuitionistic and 
Dummett-Gödel logics H and G have, it is not clear whether such 
semantics work for three-valued paraconsistent systems. 

As its answer, the author also introduced algebraic Kripke-style 
semantics for three-valued paraconsistent systems in Yang(2014). 
However, it was an open problem to show that the other kind of 
binary Kripke-style semantics works for three-valued paraconsistent 
logic. This paper resolves the remaining problem by introducing 
non-algebraic set-theoretic Kripke-style semantics for such systems.

The paper is organized as follows. First, in Section 2, we 
introduce, more exactly recall the systems IU ML-

3 (the IU ML3 
with a wB negation) and GwB

3 (the G3 with a wB negation in 
place of its pB negation) introduced in Yang(2014). Next, in 
Section 3, we introduce the other kind of binary relational 
Kripke-style semantics, non-algebraic set-theoretical Kripke-style 
semantics, for the above mentioned three-valued systems.



Set-theoretical Kripke-style semantics for three-valued paraconsistent logic 67

For ease, let us denote wB negation by - and dM negation by 
~. Moreover, for convenience, we adopt notations and terminology 
similar to those in Dunn(2000), Metcalfe & Montagna(2007), 
Montagna & Sacchetti(2003; 2004), Yang(2012a; 2012b; 2012c) 
and assume reader familiarity with them (together with results 
found therein).

2. Three-valued paraconsistent systems

We base three-valued paraconsistent logics on a countable 
propositional language with formulas Fm  built inductively as usual 
from a set of propositional variables VAR, binary connectives →, 
&, ∧, ∨, and constants F, f, t, with a defined connective:

df1. A ↔ B := (A → B) ∧ (B → A).

We further define T and A t as F → F and A ∧ t, 
respectively. We use the axiom systems to provide a consequence 
relation.

D efinition 2.1  (Yang(2014))
(i) IU ML-

3 consists of the following axiom schemes and rules:
df2. -A := (T → A) → F
A1. A → A (self-implication, SI)
A2. (A ∧ B) → A, (A ∧ B) → B (∧-elimination, ∧-E)
A3. ((A→B) ∧ (A→C)) → (A → (B∧C)) (∧-introduction, ∧-I)
A4. A → (A ∨ B), B → (A ∨ B) (∨-introduction, ∨-I)
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A5. ((A→C) ∧ (B→C)) → ((A∨B) → C) (∨-elimination, ∨-E)
A6. (A & B) → (B & A) (&-commutativity, &-C)
A7. (A & t) ↔ A (push and pop, PP)
A8. F → A (ex falsum quodlibet, EF)
A9. A → T (verum ex quolibet, VE)
A10. (A → (B → C)) ↔ ((A & B) → C) (residuation, RE)
A11. (A → B) → ((B → C) → (A → C)) (suffixing, SF)
A12. (A → B)t ∨ (B → A)t (t-prelinearity, PL t)
A13. ~~A → A (double negation elimination, DNE)
A14. (A & A) ↔ A (idempotence, ID)
A15. t ↔ f (fixed-point, FP)
A16. A → (~ A → A) (RM3(1))
A17. A ∨ (A → B) (RM3(2))
A18. --A → A (classical double negation, ClDN)
A19. A → (B ∨ -B) (triviality, TRI)
A20. (A → B) → (-B → -A) (contraposition, CP -)
A21. (A ∧ -B) → -(A → B) (-1)
A22. ~A → -A (-2)
A23. -(A & B) → ((A ∧ B) → (-A ∧ -B)) (-3)
A24. --(A & B) → (-A → B) (-4)
A25. ((A → B) ∧ -(A → B)) → (A ∧ -B) (IUML -3)
A → B, A ⊢ B (modus ponens, mp)
A, B ⊢ A ∧ B (adjunction, adj)
(ii) GwB

3 is A1 - A12, A14, A18, A19, (mp), (adj) plus
A26. A → (B → A) (weakening, W)
A27. -(A ∧ B) ↔ (-A ∨ -B) (DM1-)
A28. -(A ∨ B) ↔ (-A ∧ -B) (DM2-)
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A29. ((A → -(C ∨ -C)) → B) → (((B → A) → B) → B) (G3)
A30. ((A → B) ∧ -(A → B)) → (--A ∧ -B) (G -3(1))
A31. (--A ∧ -B) → -(A → B) (G -3(2))

For easy reference, we let Ls3 be the set of the three-valued 
systems introduced in Definition 2.1.

D efinition 2.2 Ls3 = {IU ML-
3, GwB

3}.

A theory is a set of formulas closed under consequence 
relation. A proof in a theory Γ over L3 (∈ Ls3) is a sequence s 
of formulas such that each element of s is either an axiom of L3, 
a member of Γ, or is derivable from previous elements of s by 
means of a rule of L3. Γ ⊢ A, more exactly Γ ⊢L3 A, means 
that A is provable in Γ with respect to (w.r.t.) L3, i.e., there is 
an L3-proof of A in Γ. A theory Γ is trivial if Γ ⊢ F; 
otherwise, it is non-trivial.

The deduction theorems for L3 are as follows:

Proposition 2.3  (Yang(2014)) Let Γ be a theory over L3 and A, 
B be formulas.

(i) Γ ∪ {A} ⊢IU ML -
3 B iff Γ ⊢IU ML -

3 A t → B.
(ii) Γ ∪ {A} ⊢GwB

3 B iff Γ ⊢GwB
3 A → B.

The following formulas can be proved straightforwardly.
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Proposition 2.4  (Yang(2014))
(i) L3 (∈ Ls3) proves:
(1) (A & (B & C)) → ((A & B) & C) (associativity, AS)
(2) (A → B) ∨ (B → A) (prelinearity, PL)
(3) A ∨ -A (excluded middle, EM)
(ii) IU ML-

3 proves:
(1) ~~ A ↔ A (double negation, DN)
(iii) GwB

3 proves (CP -) and:
(1) t ↔ T (INT).

3. Set-theoretical Kripke-style semantics

3.1. Semantics

Here, we consider non-algebraic set-theoretical and binary 
relational Kripke-style semantics for L3. Let us regard an evaluation 
to be a function from sentences to non-empty sets of two truth 
values, including the set having both truth values to account for 
overdetermination. We regard a three-valued matrix as a lattice and 
call it the lattice 3B; we denote each set of value(s) {0}, {1}, and 
{0, 1} by F, T, and B, respectively (see Figure 1).

                    {1} = T  ●
                              |
                 {1, 0} = B  ●
                              |
                    {0} = F  ●

Figure 1: The lattice 3B
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Each matrix for ~, -, ∧, ∨, and → can be defined as in Table 
1 (+ indicates the designated value(s)).1)

Table 1: Three-valued matrices for evaluations of L3

Note that, in Table 1, we take →G3 and →RM3 for GwB
3 and 

IU ML -
3, respectively.

Next, as in Dunn(2000), let us define evaluations. An evaluation 
into 3B is a function v from sentences into 3B such that v(-A) = 

 1) We do not have to introduce the matrix for & because & is ∧ in GwB
3, 

and definable in IUML-
3 using ~ and → connectives. Note that, while the 

matrices for GwB
3 have one desiganted element T, the mattrices for IUML-

3 
have the two T, B. By (+), we ambiguously express these in the matrices 
for ∧ and ∨.
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-v(A), v(~A) = ~v(A), v(A ∧ B) = v(A) ∧ v(B), v(A ∨ B) = 
v(A) ∨ v(B), and v(A → B) = v(A) → v(B). As the labeling of 
Figure 1 reveals, we can view 3B as consisting of subsets of the 
usual two truth values. Thus, equivalently, an evaluation can be 
regarded as a map v from sentences into the powerset of {1, 0} 
(see below). For a total evaluation, we always have at least one of 
0, 1 ∈ v(A). We write ⊩v

1 A for 1 ∈ v(A) and ⊩v
0 A for 0 ∈

v(A). Like the two-valued matrix for classical logic CL, we call a 
matrix characteristic for a calculus L when a formula A is provable 
if it assumes a designated value for every assignment of values to 
its variables, i.e., if L is weak complete w.r.t. the matrix (see e.g. 
Dunn(2000) and Dunn & Hardegree(2001).

D efinition 3.1  (Dunn(2000)) A binary relational Kripke frame 
(briefly a frame) is a structure S  = (U, ζ, ⊑), where ζ ∈ U and 
⊑ is a partial order (p.o.) on U.}

As X in Section 3, we regard U as a set of nodes. Then, ζ is the 
base state of information, and it further does not hurt to require that 
ζ be the least element of U under ⊑. By ∑, we denote the class 
of all frames. For L3, we need to consider frames where ⊑ is 
connected in the sense that, for any α, β ∈ U, either α ⊑ β or β 

⊑ α. A linear order (l.o.) is a connected partial order. Then a 
linear frame is a structure S  = (U, ζ, ⊑), where ζ ∈ U and ⊑ is 
an l.o. on U.

We assume that there are denumerably many atomic sentences, 
and that the class of formulas Fm  is defined inductively from these 
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in the usual manner, utilizing the connectives -, ~, ∧, ∨, and →. 
A (parameterized) L3-evaluation on a linear frame S  is a function 
v(A, α) from Fm  × U into 3B subject to the conditions below. We 
denote the set of these evaluations as V alL3, and we write α ⊩v

1 A 
for 1 in v(A, α) and α ⊩v

0 A for 0 in v(A, α). In context, we often 
leave the superscript v implicit.

(Atomic Hereditary Conditions (AHC)) for any atomic sentence p,
(HC1) α ⊩v

1 p and α ⊑ β ⇒ β ⊩v
1 p;

(HC0) α ⊩v
0 p and α ⊑ β ⇒ β ⊩v

0 p.

The truth and falsity conditions for propositional constants t, f, T, 
F, and compound sentences are then given by the following clauses:

(tf1) α ⊩1 t ⇔ α ⊩1 f;
(tf0) α ⊩0 t ⇔ α ⊩0 f;
(⊤1) α ⊩1 T always;
(⊤0) α ⊩0 T never;
(⊥1) α ⊩1 F never;
(⊥0) α ⊩0 F always;
(-1) α ⊩1 -A ⇔ α ⊩0 A;
(-0) α ⊩0 -A ⇔ α ⊮0 A;
(~1) α ⊩1 ~A ⇔ α ⊩0 A;
(~0) α ⊩0 ~A ⇔ α ⊩1 A;
(∧1) α ⊩1 A ∧ B ⇔ α ⊩1 A and α ⊩1 B;
(∧0) α ⊩0 A ∧ B ⇔ α ⊩0 A or α ⊩0 B;
(∨1) α ⊩1 A ∨ B ⇔ α ⊩1 A or α ⊩1 B;
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(∨0) α ⊩0 A ∨ B ⇔ α ⊩0 A and α ⊩0 B;
(→1) α ⊩1 A → B ⇔ (i) for all β ⊒ α, (β ⊩1 A ⇒ β ⊩1 B), 

and
                    (ii) for all β ⊒ α, (β ⊩0 B ⇒ β ⊩0 A);
(→0G3) α ⊩0 A → B ⇔ (i) α ⊩0 - A, i.e., for all β ⊒ α, β ⊮0 

A, and α ⊩0 B, or
                      (ii) α ⊮1 A → B;
(→0RM3) α ⊩0 A → B ⇔ (i) α ⊩1 A and α ⊩0 B, or
                        (ii) α ⊮1 A → B.

Note that, w.r.t. the truth condition of implication, we take (→1) 
for L3, but w.r.t. the falsity condition of implication, we take (→0G3) 
and (→0RM3) for GwB

3 and IU ML-
3, respectively. More exactly, the 

GwB
3-evaluation has the conditions (-1), (-0), (∧1), (∧0), (∨1), (∨0), 

(→1), and (→0G3); the IU ML-
3-evaluation has the conditions (tf1), 

(tf0), (⊤1), (⊤0), (⊥1), (⊥0), (-1), (-0), (~1), (~0), (∧1), (∧0), (∨1), 
(∨0), (→1), and (→0RM3).

A sentence A is L3-valid in a frame S  = (U, ζ, ⊑) iff, for all v 
in V alL3, ζ ⊩v

1 A. Let Θ be the class of linear frames. A sentence 
A is L3-valid, in symbols ⊨L3 A, iff, for all S  ∈ Θ, A is L3-valid 
in S .

Given a class of ⊨ M L3 for L3, we can define (simple truth 
preserving, corresponding to ⊨1,) consequence as follows:

D efinition 3.2  Γ ⊨L3 A iff, for all ⊨ M = (U, ζ, ⊑, v) ∈
M L3, if ζ ⊩v

1 B for all B ∈ Γ, then ζ ⊩v
1 A.}
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3.2. Soundness and completeness for L3

First we note the following lemma, which is useful for the 
verification of each instance of the axiom schemes in Proposition 
3.4 below: 

Lemma 3.3 (Hereditary Lemma) For any sentence A,
(i) if α ⊩v

1 A and α ⊑ β, then β ⊩v
1 A, and

(ii) if α ⊩v
0 A and α ⊑ β, then β ⊩v

0 A.

Proof: See Hereditary Lemma in Dunn(1976) and Lemmas 1 
and 5 in Yang(2012a). □

Proposition 3.4 (Soundness) If ⊢L3 A, then ⊨L3. A.

Proof: The rules of L3 are (mp) and (adj). Both of these 
obviously preserve truth, i.e., L3-validity. (For the former, look at 
(→1) and recall that ⊑ is reflexive; for the latter, look at (∧1).) 
Thus, the proof reduces to verification of axioms for L3. We 
verify A18 and A30 as examples.

For A18, we must show that (i) α ⊩1 --A only if α ⊩1 A and 
(ii) α ⊩0 A only if α ⊩0 --A. For (i), let α ⊩1 --A. By (-1) and 
(-0), we have α ⊩1 --A iff α ⊩0 -A iff α ⊮0 A. Then, since the 
evaluation is total, we obtain α ⊩1 A. The proof for (ii) is 
analogous. 

For A30, we must show that (i) α ⊩1 (A → B) ∧ -(A → B) 
only if α ⊩1 --A ∧ -B and (ii) α ⊩0 --A ∧ -B only if α ⊩0 (A 
→ B) ∧ -(A → B). For (i), let α ⊩1 (A → B) ∧ -(A → B). By 
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(∧1), we have α ⊩1 A → B and α ⊩1 -(A → B). By (-1) and (→

0G3), we have α ⊩1 -(A → B) iff α ⊩0 A → B iff α ⊩0 -A and 
α ⊩0 B iff α ⊩1 --A and α ⊩1 -B. Therefore, by (∧1), we have 
α ⊩1 --A ∧ -B. For (ii), let α ⊩0 --A ∧ -B. By (∧0) and (-0), we 
have α ⊩0 --A ∧ -B iff α ⊩0 --A or α ⊩0 -B iff α ⊮0 -A or α 

⊮0 B. Then, by (→0G3) and (-0), we further have α ⊮0 -A or α ⊮0 
B iff α ⊮0 A → B iff α ⊩0 -(A → B). Then, since α ⊩0 (A →
B) ∧ -(A → B) iff α ⊩0 (A → B) or α ⊩0 -(A → B) by (∧0), 
we have α ⊩0 (A → B) ∧ -(A → B). 

The verification of other axiom schemes for L3 is left to the 
reader. □

We give completeness results for L3 by using the well-known 
Henkin-style proofs for modal logic, but with prime theories in 
place of maximal theories. We call a theory Γ prime if, for each 
pair A, B of formulas such that Γ ⊢ A ∨ B, Γ ⊢ A or Γ ⊢ B. 
By an L3-theory, we mean a theory Γ closed under rules of L3. As 
in relevance logic, by a regular L3-theory, we mean an L3-theory 
containing all of the theorems of L3. Since we have no use of 
irregular theories, from now on, by an L3-theory, we henceforth 
mean a regular L3-theory.

Moreover, where Γ is a prime L3-theory, we define the canonical 
L3 frame determined by Γ to be a structure S  = (U can, ζcan, ⊑can), 
where ζcan is the Γ, U can is the set of prime L3 theories extending ζ

can, and ⊑can is ⊆ restricted to U can. Note that the base ζcan is 
constructed as the prime L3-theory that excludes nontheorems of L3, 
i.e., excludes A such that not ⊢L3 A. The partial orderedness and 
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the linear orderedness of the canonical L3 frame depend on ⊆
restricted on U can. Then, first, the following is obvious.

Proposition 3.5 The canonical L3 frame is linearly ordered.

Proof: By Proposition 26 in Dunn(2000). □

Next, we define a canonical evaluation as follows:

(1) 1 ∈ vcan(A, α) ⇔ A ∈ α; 
(2) 0 ∈ vcan(A, α) ⇔ -A (~A resp) ∈ α.

This definition allows us to state the following lemma.

Lemma 3.6 (Canonical Evaluation Lemma) vcan is an evaluation.

Proof: The Hereditary Conditions (HC1) and (HC0) are obvious. 
Thus, we show that the canonical evaluation vcan satisfies the truth 
and falsity conditions above. We prove here the truth and falsity 
conditions (-1) and (-0) and the falsity condition of implication (→

0G3)
For (-1), we must show

α ⊩Vcan
1 -A iff α ⊩Vcan

0 A.

By (1) and (2), we have α ⊩Vcan
1 -A iff -A ∈ α iff α ⊩Vcan

0 A.
For (-0), we must show
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α ⊩Vcan
0 -A iff α ⊮Vcan

0 A.

By (2), we have α ⊩Vcan
0 -A iff --A ∈ α. Then, since -B for any 

formula B has boolean properties, we have --B ∈ α iff -B ∉ α. 
Therefore, by (2), we have --A ∈ α iff -A ∉ α iff α ⊮Vcan

0 A.
For (→0G3), we must show

α ⊩Vcan
0 A → B iff (i) α ⊩Vcan

1 --A and α ⊩Vcan
0 B, or

                     (ii) α ⊮Vcan
1 A → B.

For the left-to-right direction, let α ⊩Vcan
0 A → B. By (1) and (2), 

we have α ⊩Vcan
0 A → B iff -(A → B) ∈ α iff α ⊩Vcan

1 -(A →
B). If A → B ∈ α, we obtain --A ∧ -B ∈ α using A30. 
Therefore, by (1) and (2), we obtain α ⊩Vcan

1 --A and α ⊩Vcan
0 B. 

If A → B ∉ α, we have α ⊮Vcan
1 A → B. For the right-to-left 

direction, we first assume α ⊩Vcan
1 --A and α ⊩Vcan

0 B. Then, using 
(1), (2), and A31, we can obtain α ⊩Vcan

0 A → B. Let α ⊮Vcan
1 A 

→ B. (EM) and primeness ensures α ⊩Vcan
0 A → B. □

Let us call a model M, = (U, ζ, ⊑, v), for L3, an L3 model. 
Then, by Lemma 3.6, the canonically defined (U can, ζcan, ⊑can, vcan) 
is an L3 model. Thus, since, by construction, ζcan excludes our 
chosen nontheorem A, and the canonical definition of ⊨ agrees 
with membership, we can state that, for each nontheorem A of L3, 
there is an L3 model in which A is not ζcan ⊨ A. It gives us the 
weak completeness of L3 as follows.
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Theorem 3.7  (Weak completeness) If ⊨L3 A, then ⊢L3 A.

Next, we prove the strong completeness of L3. As for R+ in 
Anderson et al.(1992), we define A to be an L3 consequence of a 
theory Γ iff for every L3 model, whenever α ⊨ B for every B ∈
Γ, α ⊨ A, for all α ∈ U. We say that A is L3 deducible from Γ 

iff A is in every L3-theory containing Γ. Where Δ is a set of 
formulas not necessarily a theory, Δ ⊢ A can be thought of as 
saying that A is deducible from the axioms Δ. The set of {A: Δ ⊢

A} is intuitively the smallest theory containing the axioms Δ, and 
we shall label it as Th(Δ). Then,

Proposition 3.8 Let Γ be a theory over L3. If Γ ⊬L3 A, then 
there is a prime theory Γ' such that Γ ⊆ Γ' and A ∉ Γ'.}

Proof: We prove the case of IU ML -
3 as an example. Let L3 be 

IU ML -
3. Take an enumeration {An: n ∈ ω} of the well-formed 

formulas of L3. We define a sequence of sets by induction as 
follows:

Γ0 = {A': Γ ⊢L3 A'}.
Γi+1 = Th(Γi ∪ {A i+1})   if Γi, A i+1 ⊬L3 A,

               Γi               otherwise.

Let Γ' be the union of all these Γn's. The primeness of Γ' can be 
proved using the deduction theorem for IU ML-

3, i.e., Proposition 2.3 
(i), along the usual lines. □
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Thus, using Lemma 3.6 and Proposition 3.8, we can show strong 
completeness of L3 as follows.

Theorem 3.9  (Strong completeness) Let Γ be a theory over L3. 
If Γ ⊨L3 A, then Γ ⊢L3 A.

4. Concluding remark

Yang investigated algebraic Kripke-style semantics for 
three-valued paraconsistent systems in Yang(2014). We further 
investigated non-algebraic set-theoretical Kripke-style semantics for 
such systems. But three-valued paraconsistent system having 
algebraic Kripke-style semantics but not set-theoretical Kripke-style 
semantics, and vice versa, have not yet been studied. This is a 
problem left in this paper. 
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3치 초일관 논리를 위한 집합-이론적 크립키형 의미론
양 은 석

이 글에서 우리는 3치 초일관 논리를 위한 비대수적 집합-이론적

크립키형 의미론을 다룬다. 이를 위하여 먼저 두 3치 체계를 소개

한다. 그리고 그 다음에 이에 상응하는 집합-이론적 크립키형 의미

론을 소개한다.

주요어: (집합-이론적) 크립키형 의미론, 대수적 의미론, 3치 논

리, 초일관 논리


