DOI QR코드

DOI QR Code

북반구 해빙 지역에서 세 종류 위성관측 표면온도에 대한 오차분석

Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere

  • 강희정 (이화여자대학교 대기과학공학과) ;
  • 유정문 (이화여자대학교 과학교육과)
  • Kang, Hee-Jung (Department of Atmospheric Science and Engineering, Ewha Womans University) ;
  • Yoo, Jung-Moon (Department of Science Education, Ewha Womans University)
  • 투고 : 2015.01.14
  • 심사 : 2015.04.15
  • 발행 : 2015.04.30

초록

본 연구에서는 위성관측 표면온도 및 해당 온도경향의 불확실성을 조사하기 위하여 북반구($30-90^{\circ}N$) 해양 지역에서 2003-2014년 4월 16-24일 기간에 세 종류의 위성관측 자료(MODIS IST, AIRS/AMSU SST, AIRS only SST)를 상호 비교하였다. AIRS/AMSU 표면온도값에 비하여 MODIS는 해빙과 해수의 경계지역에서 계통적으로 최대 1.6 K 높은 반면에, 해빙 지역에서는 2 K 낮았다. 이러한 주요 원인은 표면온도 산출알고리즘의 해표 정보(e.g., 해빙 탐지)를 위하여 MODIS는 적외 채널만을 사용하는 반면에, AIRS/AMSU는 마이크로파 및 적외 채널을 함께 사용하는 데에 있다. 미국 항공우주국(NASA's Goddard Space Flight Center; NASA/GSFC)은 AMSU-A의 노후화를 대비하기 위하여 AIRS/AMSU 알고리즘을 일부 수정하여 AIRS only 알고리즘을 개발하였다. AIRS/AMSU와 AIRS only 표면온도 사이에 평균 제곱근 오차(RMSE)값은 $30-90^{\circ}N$ 해양 지역에서 0.55 K이며, 편차(bias)는 0.13 K이었으며, 해빙/해수 경계 지역에서는 이들 차이가 더 크게 나타났다. 해빙 경계지역에서 AIRS/AMSU와 AIRS only 간의 차이가 다른 지역에 비하여 큰 이유는 AIRS only 알고리즘이 AMSU 마이크로파 자료 대신에 GCM (NOAA Global Forecast System) 온도 산출물을 사용하는 데에 있다. 세 종류의 위성관측 표면온도 자료는 $70-80^{\circ}N$ 위도대에서 유의적인 온도증가($0.23-0.28Kyr^{-1}$)를 보였다. 위성관측 표면온도들 간에 계통적인 불일치는 같은 방향(온도증가 또는 온도감소)으로 해당 온도경향 값들 간의 차이에 영향을 줄 수 있다.

We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.

키워드

참고문헌

  1. Aumann, H.H., Chahine, M.T., Gautier, C., Goldberg, M.D., Kalnay, E., McMillin, L.M., Revercomb, H., Rosenkranz, P.W., Smith, W.L., Staelin, D.H., Strow, L.L., and Susskind, J., 2003, AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. IEEE Geoscience and Remote Sensing Society, 41, 253-264. https://doi.org/10.1109/TGRS.2002.808356
  2. Angell, J.K., 2003, Effect of exclusion of anomalous tropical stations on temperature trends from a 63-station radiosonde network, and comparison with other analyses. Journal of Climate, 16, 2288-2295. https://doi.org/10.1175/2763.1
  3. Barnes, W.L., Pagano, T.S., and Salomonson, V.V., 1998, Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE Geoscience and Remote Sensing Society, 36, 1088-1100. https://doi.org/10.1109/36.700993
  4. Barnet, C., Manning, E., Rosenkranz, P., Strow, L., Susskind, J., Chahine, M.T., and Aumann, H.H., 2007, AIRS-team retrieval for core products and geophysical parameters (Level2). http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs (December 4th 2014)
  5. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., and Zhang, X.Y., 2013, Clouds and Aerosols. In Stocker, T.F. et al. (eds.), Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK, 571-657.
  6. Comiso, J.C. and Hall, D.K., 2014, Climate trends in the Arctic as observed from space. WIREs Climate Change, 5, 389-409, doi: 10.1002/wcc.277.
  7. Dong, S., Gille, S.T., Sprintall, J., and Gentemann, C., 2006, Validation of the advanced microwave scanning radiometer for the earth observing system (AMSR-E) sea surface temperature in the southern ocean. Journal of Geophysical Research, 111, C04002, doi:10.1029/2005JC002934.
  8. Donlon, C.J., Minnett, P.J., Gentemann, C., Nightingale, T.J., Barton, I.J., Ward, B., and Murray, M.J., 2002, Toward improved validation of satellite sea surface skin temperature measurements for climate research. Journal of Climate, 15, 353-369. https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2
  9. Emery, W.J., Castro, S., Wick, G.A., Schluessel, P., and Donlon, C., 2001, Estimating sea surface temperature from infrared satellite and in situ temperature data. Bulletin of the American Meteorological Society, 82, 2773-2785. https://doi.org/10.1175/1520-0477(2001)082<2773:ESSTFI>2.3.CO;2
  10. English, S.J., 2008, The importance of accurate skin temperature in assimilating radiances from satellite sounding instruments. IEEE Geoscience and Remote Sensing Society, 46, 403-408, doi: 10.1109/TGRS.2007.902413.
  11. Fairall, C.W., Bradley, E.F., Rogers, D.P., Edson, J.B., and Young, G.S., 1996, Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupledocean atmosphere response experiment. Journal of Geophysical Research, 101, 3747-3764. https://doi.org/10.1029/95JC03205
  12. Gardner, M.W. and Dorling, S.R., 1998, Artificial neural networks (the multilayer perceptron) - A review of applications in the atmospheric sciences. Atmospheric Environment, 32, 2627-2636. https://doi.org/10.1016/S1352-2310(97)00447-0
  13. Grody, N., Weng, F., and Ferraro, R., 1999, Application of AMSU for obtaining water vapor, cloud liquid water, precipitation, snow cover and sea ice concentration. In Marshall, J.L. and Jasper, J.D. (eds.), Technical proceedings of the tenth international atovs study conference. Bureau of Meteorology Research Centre, Melbourne, Australia, 230-240.
  14. Hall, D. K., 2001, Algorithm Theoretical Basis Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms. http://modis-snow-ice.gsfc.nasa.gov/?c=atbd&t=atbd (December 4th 2014)
  15. Hall, D.K., Key, J.R., Casey, K.A., Riggs, G.A., and Cavalieri, D.J., 2004, Sea ice surface temperature product from MODIS. IEEE Geoscience and Remote Sensing Society, 42, 1076-1087. https://doi.org/10.1109/TGRS.2004.825587
  16. Hall, D.K., Comiso, J.C., Digirolamo, N.E., Shuman, C.A., Box, J.E., and Koenig, L.S., 2013, Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophysical Research Letters, 40, 2114-2120, doi:10.1002/grl.50240.
  17. Hearty, T.J., Savtchenko, A., Tian, B., Fetzer, E., Yung, Y.L., Theobald, M., Vollmer, B., Fishbein, E., and Won, Y.-I., 2014, Estimating sampling biases and measurement uncertainties of AIRS/AMSU-A temperature and water vapor observations using MERRA reanalysis. Journal of Geophysical Research, 119, 2725-2741, doi:10.1002/2013JD021205.
  18. Hewison, T.J. and English, S.J., 1999, Airborne retrievals of snow and ice surface emissivity at millimeter wavelengths. IEEE Geoscience and Remote Sensing Society, 37, 1871-1879. https://doi.org/10.1109/36.774700
  19. IPCC, 2007, IPCC Fourth Assessment Report: Climate Change 2007 (AR4). Cambridge University Press, Cambridge, UK and New York, USA, 976 p.
  20. Jakob, C., 1999, Cloud cover in the ECMWF reanalysis. American Meteorological Society, 12, 947-959.
  21. Jee, J.-B. and Choi, Y.-J., 2014, Conjugation of Landsat data for analysis of the land surface properties in capital area. Journal of the Korean Earth Science Society, 35, 54-68. (in Korean) https://doi.org/10.5467/JKESS.2014.35.1.54
  22. Jin, M., Dickinson, R.E., and Vogelmann, A.M., 1997, A comparison of CCM2-BAT skin temperature and surface-air temperature with satellite and surface observations. Journal of Climate, 10, 1505-1524. https://doi.org/10.1175/1520-0442(1997)010<1505:ACOCBS>2.0.CO;2
  23. Jin, M., and Dickinson, R. E., 2010, Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Environmental Research Letters, 5, 044004. https://doi.org/10.1088/1748-9326/5/4/044004
  24. Karbou, F., Rabier, F., and Prigent, C., 2014, The assimilation of observations from the Advanced Microwave Sounding Unit over sea ice in the French global numerical weather prediction system. Monthly Weather Review, 142, 125-140, doi: 10.1175/MWR-D-13-00025.1.
  25. Karl, T.R., Hassol, S.J., Miller, C.D., and Murray, W.L. (eds.), 2006, Temperature trends in the lower atmosphere: steps for understanding and reconciling differences. A report by the Climate Change Science Program and Subcommittee on Global Change Research, Washington, DC, 180 p.
  26. Key, J., John, R., Collins, B., Fowler, C., and Stone, R.S., 1997, High-latitude surface temperature estimates from thermal satellite data. Remote Sensing of Environment, 61, 302-309. https://doi.org/10.1016/S0034-4257(97)89497-7
  27. Kim, E.-J. and Hong, S.-Y., 2010, Impact of air-sea interaction on East Asian summer monsoon climate in WRF. Journal of Geophysical Research, 115, D19118. https://doi.org/10.1029/2009JD013253
  28. Konda, M., Imasato, N., Nishi, K., and Toda, T., 1994, Measurement of the sea surface emissivity. Journal of Oceanography, 50, 17-30. https://doi.org/10.1007/BF02233853
  29. Kongoli, C., Boukabara, S., Yan, B., Weng, F., and Ferraro, R., 2008, Sea ice concentration retrievals from variationally retrieved microwave surface emissivities. http://microrad2008.cetem.org/public/presentations/20080314_16.50_Kongoli.pdf (December 4th 2014)
  30. Lee, Y.-R., Yoo, J.-M., Jeong, M.-J., Won, Y.-I., Hearty, T., and Shin, D.-B., 2013, Comparison between MODIS and AIRS/AMSU satellite-derived surface skin temperatures. Atmospheric Measurement Techniques, 6, 445-455, doi:10.5194/amt-6-445-2013.
  31. Li, G., Huang, H.-L., Baggett, K., and Li, J., 2005, Comparison of global AIRS/AMSU and AIRS/MODIS cloud-clearing performance. In Huang, H.-L. et al. (eds.), Atmospheric and Environmental Remote Sensing Data Processing and Utilization: Numerical Atmospheric Prediction and Environmental Monitoring. SPIE, California, USA, 334-342, doi: 10.1117/12.615510.
  32. Lindsay, R.W. and Rothrock, D.A., 1994, Arctic sea ice surface temperature from AVHRR. Journal of Climate, 7, 174-183. https://doi.org/10.1175/1520-0442(1994)007<0174:ASISTF>2.0.CO;2
  33. Liou, K.N., 2002, An introduction to atmospheric radiation. Academic press, Amsterdam, Netherlands, 583 p.
  34. Liu, C.-Y., Li, J., Weisz, E., Schmit, T.J., Ackerman, S.A., and Huang, H.-L., 2008, Synergistic use of AIRS and MODIS radiance measurements for atmospheric profiling. Geophysical Research Letters, 35, L21802, doi:10.1029/2008GL035859.
  35. Molnar, G.I. and Susskind, J., 2005, Validation of AIRS/AMSU cloud retrievals using MODIS cloud analyses. In Shen, S. S. and Lewis, P. E. (eds.), Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. SPIE, Florida, USA, 618, doi:10.1117/12.603706.
  36. Nghiem, S.V., Hall, D.K., Mote, T.L., Tedesco, M., Albert, M.R., Keegan, K., Shuman, C.A., Digirolamo, N.E., and Neumann, G., 2012, Extreme melt across Greenland ice sheet. Geophysical Research Letters, 39, L20502, doi:10.1029/2012GL053611.
  37. Olsen, E., 2013a, AIRS/AMSU/HSB version 6 changes from version 5. http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_Changes_from_V5.pdf (December 4th 2014)
  38. Olsen, E., 2013b, AIRS/AMSU/HSB version 6 data release user guide. http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_Data_Release_User_Guide.pdf (December 4th 2014)
  39. Olsen, E., 2013c, AIRS/AMSU/HSB version 6 retrieval flow. http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_Retrieval_Flow.pdf (December 4th 2014)
  40. Randel, W.J. and Wu, F., 2006, Biases in stratospheric and tropospheric temperature trends derived from historical radiosonde data. Journal of Climate, 19, 2094-2104. https://doi.org/10.1175/JCLI3717.1
  41. Riggs, G.A., Hall, D.K., and Ackerman, S.A., 1999, Sea ice extent and classification mapping with the moderate resolution imaging spectroradiometer airborne simulator. Remote Sensing of Environment, 68, 152-163. https://doi.org/10.1016/S0034-4257(98)00107-2
  42. Riggs, G.A., Hall, D.K., and Salomonson, V.V., 2006, MODIS Sea Ice Products User Guide to Collection 5. http://modis-snow-ice.gsfc.nasa.gov/uploads/siug_c5.pdf (December 4th 2014)
  43. Scott, K.A., Li, E., and Wong, A., 2014, Sea ice surface temperature estimation using MODIS and AMSR-E data within a guided variational model along the Labrador Coast. IEEE Geoscience and Remote Sensing Society, 7, 3685-3694, doi: 10.1109/JSTARS.2013.2292795.
  44. Spencer, R.W., 2015, Why Do Different Satellite Datasets Produce Different Global Temperature Trends. http://www.drroyspencer.com/2015/01/why-do-different-satellitedatasets-produce-different-global-temperature-trends/ (March 1st 2015)
  45. Susskind, J., Blaisdell, J.M., and Iredell, L., 2014, Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: the atmospheric infrared sounder science team version-6 retrieval algorithm. Journal of Applied Remote Sensing, 8, 084994, doi: 10.1117/1.JRS.8.084994.
  46. Tian, B., Fetzer, E.J., Kahn, B.H., Teixeira, J., Manning, E., and Hearty, T., 2013, Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. Journal of Geophysical Research, 118, 114-134, doi:10.1029/2012JD018607.
  47. Tobin, D.C., Revercomb, H.E., Knuteson, R.O., Lesht, B.M., Strow, L.L., Hannon, S.E., Feltz, W.F., Moy, L.A., Fetzer, E.J., and Cress, T.S., 2006, Atmospheric radiation measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. Journal of Geophysical Research, 111, D09S14, doi:10.1029/2005JD006103.
  48. Trenberth, K.E., and Coauthors, 2007, Observations: Surface and atmospheric climate change. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (eds.), Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, USA, 159-254.
  49. Wang, K., Wan, Z., Wang, P., Sparrow, M., Liu, J., Zhou, X., and Haginoya, S., 2005, Estimation of surface long wave radiation and broadband emissivity using moderate resolution imaging spectroradiometer (MODIS) land surface temperature/emissivity products. Journal of Geophysical Research, 110, D11109, doi:10.1029/2004JD005566.
  50. Wilks, D.S., 2006, Statistical methods in the atmospheric sciences, 2nd ed.. Academic Press, Amsterdam, Netherlands, 627 p.
  51. Won, Y.-I., 2008, README document for AIRS level-3 version 5 standard products: daily (AIRH3STD, AIRX3STD, AIRS3STD), 8-day (AIRH3ST8, AIRX3ST8, AIRS3ST8) & monthly (AIRH3STM, AIRX3STM, AIRS3STM). http://disc.sci.gsfc.nasa.gov/TRMM/AIRS/documentation/readmes/README.AIR-3ST.pdf (December 24th 2014)
  52. Yan, B., Weng, F., and Meng, H., 2008, Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit. Journal of Geophysical Research, 113, D19206, doi:10.1029/ 2007JD009559.
  53. Yoo, J.-M., and Kim, G.-S., 1997, Inference of atmospheric thermal state from satellite data: Global temperature trends. Journal of the Korean Earth Science Society, 18, 40-50. (in Korean)
  54. Yoo, J.-M., and Kim, S.-H., 1998, Empirical orthogonal function analysis of microwave satellite data for lower stratospheric temperature. Journal of the Korean Earth Science Society, 19, 649-663. (in Korean)
  55. Yoo, J.-M., Won, Y.-I., Jeong, M.-J., Kim, K.-M., Shin, D.-B., Lee, Y.-R., and Cho, Y.-J., 2013, Intensity of climate variability derived from the satellite and MERRA reanalysis temperatures: AO, ENSO, and QBO. Journal of Atmospheric and Solar-Terrestrial Physics, 95-96, 15-27,doi:10.1016/j.jastp.2013.01.002.
  56. Yuan, D., 2009, Science focus: Sea surface temperature measurements of the MODIS and AIRS instruments onboard of Aqua satellite. http://disc.sci.gsfc.nasa.gov/oceans/additional/sciencefocus/modis/MODIS_and_AIRS_SST_comp.html (December 4th 2014)

피인용 문헌

  1. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only vol.8, pp.10, 2015, https://doi.org/10.5194/amt-8-4025-2015