DOI QR코드

DOI QR Code

상 변화 메모리 재료 내의 Ga 주입에 미치는 GaGe 스퍼터링 전력의 영향

Effect of GaGe Sputtering Power on Ga Doping in Phase Change Memory Materials

  • 정순원 (한국전자통신연구원(ETRI), 정보통신부품소재연구소) ;
  • 이승윤 (한밭대학교 신소재공학과)
  • Jung, Soon-Won (ETRI, Components & Materials Research Laboratory) ;
  • Lee, Seung-Yun (Department of Advanced Materials Engineering, Hanbat National University)
  • 투고 : 2014.12.04
  • 심사 : 2015.04.07
  • 발행 : 2015.05.01

초록

The phase change memory material is an active element in phase change memory and exhibits reversible phase transition behavior by thermal energy input. The doping of the phase change memory material with Ga leads to the increase of its crystallization temperature and the improvement of its amorphous stability. In this study, we investigated the effect of GaGe sputtering power on the formation of the phase change memory material including Ga. The deposition rate linearly increased to a maximum of 127 nm and the surface roughness remained uniform as the GaGe sputtering power increased in the range from 0 to 75 W. The Ga concentration in the thin film material abruptly increased at the critical sputtering power of 60 W. This influence of GaGe sputtering power was confirmed to result from a combined sputtering-evaporation process of Ga occurring due to the low melting point of Ga ($29.77^{\circ}C$).

키워드

참고문헌

  1. S. Lee, S. Jung, S. Yoon, and Y. S. Park, J. Non-Cryst. Solids, 358, 2405 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.12.014
  2. H. Tsuda, Proc. Symposium on Phase Change Optical Information Storage (The Society of Phase Change Recording, Atami, Japan, 2007) p. 39.
  3. J. Akola and R. O. Jones, Phys. Rev. B, 76, 235201 (2007). https://doi.org/10.1103/PhysRevB.76.235201
  4. S. Raoux, M. Salinga, J. L. Jordan-Sweet, and A. Kellock, J. Appl. Phys., 101, 044909 (2007). https://doi.org/10.1063/1.2654556
  5. D. Z. Dimitrov, C. Babeva, S. Cheng, W. Hsu, M. Hsieh, and S. Tsai, Proc. SPIE 5380 (SPIE, Monterey, USA, 2004) p. 487.
  6. H. Cheng, K. Kao, C. Lee, and T. Chin, IEEE Trans. Mag., 43, 927 (2007). https://doi.org/10.1109/TMAG.2006.888516
  7. L. Pieterson, M. Schijndel, and J.C.N. Rijpers, Appl. Phys. Lett., 83, 1373 (2003). https://doi.org/10.1063/1.1604172
  8. Y. Kajikawa and S. Noda, Appl. Surf. Sci., 245, 281 (2005). https://doi.org/10.1016/j.apsusc.2004.10.021
  9. P. Sigmund, Phys. Rev., 184, 383 (1969). https://doi.org/10.1103/PhysRev.184.383
  10. S. Lee, Y. Park, S. Yoon, S. Jung, and B. Yu, J. Electrochem. Soc., 155, H314 (2008). https://doi.org/10.1149/1.2885046
  11. R. W. Olesinski and G. J. Abbaschian, Bulletin of Alloy Phase Diagrams, 6, 258 (1985). https://doi.org/10.1007/BF02880411
  12. R. C. Krutenat and W. R. Gesick, J. Vac. Sci. Technol., 7, S40 (1970). https://doi.org/10.1116/1.1315917