참고문헌
- Airy, G. B. (1861). On the Algebraic and Numerical Theory of Errors of Observations and the Combination of Observations, Macmillan and Co., Ltd., London.
- Bayarri, M. J., DeGroot, M. H. and Kadane, J. B. (1988). What is the likelihood function? (with discussion), Statistical Decision Theory and Related Topics IV, 1, eds S.S. Gupta and J. O. Berger, Springer, New York.
- Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. by the late Rev. Mr. Bayes, FRS. communicated by Mr. Price, in a letter to John Canton, AMFRS, Philosophical Transactions (1683-1775), 370-418.
- Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society B, 57, 289-300.
- Berger, J. O. and Wolpert, R. (1984). The Likelihood Principle, Hayward: Institute of Mathematical Statistics Monograph Series.
- Birnbaum, A. (1962). On the foundations of statistical inference, Journal of the American Statistical Association, 57, 269-326 https://doi.org/10.1080/01621459.1962.10480660
- Bjørnstad, J. F. (1996). On the generalization of the likelihood function and likelihood principle, Journal of the American Statistical Association, 91, 791-806.
- Breslow, N. E. and Clayton, D. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9-25.
- Butler, R. W. (1986). Predictive likelihood inference with applications (with discussion), Journal of the RoyalStatistical Society, Series B, 48, 1-38.
- Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometrica, 50, 987-1008. https://doi.org/10.2307/1912773
- Fisher, R. A. (1921). On the probable error of a coefficient of correlation deduced from a small sample, Metron, 1, 3-32.
- Ha, I. D., Lee, Y. and Song J.-K. (2001). Hierarchical likelihood approach for frailty models, Biometrika, 88, 233-243. https://doi.org/10.1093/biomet/88.1.233
- Ha, I. D., Noh, M. and Lee, Y. (2012). frailtyHL: A package for fitting frailty models with h-likelihood, R Journal, 4, 28-37.
- Ha, I. D., Pan, J., Oh, S. and Lee, Y. (2014). Variable selection in general frailty models using penalized h-likelihood, Journal of Computational and Graphical Statistics, 23, 1044-1060. https://doi.org/10.1080/10618600.2013.842489
- Lauritzen, S. L. (1974). Sufficiency, prediction and extreme models, Scandinavian Journal of Statistics, 1, 128-134.
- Lee, D., Lee, W., Lee, Y. and Pawitan, Y. (2010). Super-sparse principal component analyses for high-throughput genomic data, BMC Bioinformatics, 11, 296. https://doi.org/10.1186/1471-2105-11-296
- Lee, D., Lee, W., Lee, Y. and Pawitan, Y. (2011). Sparse partial least-squares regression and its applications to high-throughput data analysis, Chemometrics and Intelligent Laboratory Systems, 109, 1-8 https://doi.org/10.1016/j.chemolab.2011.07.002
- Lee, J., Lee, K. and Lee, Y. (2014). History and future of Bayesian statistics, The Korean Journal of Applied Statistics, 27, 855-863. https://doi.org/10.5351/KJAS.2014.27.6.855
- Lee, S., Pawitan, Y. and Lee, Y. (2015). A random-effect model approach for group variable selection, Computational Statistics and Data Analysis, 89, 147-157. https://doi.org/10.1016/j.csda.2015.02.020
- Lee, Y. and Bjornstad, J. F. (2013). Extended likelihood approach to large scale multiple testing, Journal of the Royal Statistical Society B, 75, 553-575. https://doi.org/10.1111/rssb.12005
- Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion), Journal of the Royal Statistical Society B, 58, 619-678.
- Lee, Y. and Nelder, J. A. (2001). Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions, Biometrika, 88, 987-1006. https://doi.org/10.1093/biomet/88.4.987
- Lee, Y. and Nelder, J. A. (2006). Double hierarchical generalized linear models (with discussion), Journal of the Royal Statistical Society C, 55, 139-185. https://doi.org/10.1111/j.1467-9876.2006.00538.x
- Lee, Y., Nelder, J. A. and Pawitan, Y. (2006). Generalised Linear Models with Random Effects: Unified Analysis via h-Likelihood, Chapman and Hall, London.
- Lee, Y. and Noh, M. (2012). Modelling random effect variance with double hierarchical generalized linear models, Statistical Modelling, 12, 487-502. https://doi.org/10.1177/1471082X12460132
- Lee, Y. and Oh, H. (2014). A new sparse variable selection via random-effect model, Journal of Multivariate Analysis, 125, 89-99. https://doi.org/10.1016/j.jmva.2013.11.016
- Molas, M., Noh, M., Lee, Y. and Lesaffre, E. (2013). Joint hierarchical generalized linear models with multivariate Gaussian random effects, Computational Statistics and Data Analysis, 68, 239-250. https://doi.org/10.1016/j.csda.2013.07.011
- Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models, Journal of the Royal Statistical Society A, 135, 370-384. https://doi.org/10.2307/2344614
- Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference using Likelihood, Clarendon Press, Oxford.
- Pearson, K. (1920). The fundamental problems of practical statistics, Biometrika, 13, 1-16. https://doi.org/10.1093/biomet/13.1.1
- Price, C. J., Kimmel, C. A., Tyle, R. W. and Marr, M. C. (1985). The developmental toxicity of Ethylene Glycol in rates and mice, Toxicological Applications in Pharmacololgy, 81, 113-127.