DOI QR코드

DOI QR Code

Fingerprint Pore Extraction Method using 1D Gaussian Model

1차원 가우시안 모델을 이용한 지문 땀샘 추출 방법

  • Cui, Junjian (Department of Mechanical and Control Engineering, Tokyo Institute of Technology) ;
  • Ra, Moonsoo (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Kim, Whoi-Yul (Department of Electronics and Computer Engineering, Hanyang University)
  • 최균건 (도쿄공업대학 기계저어시스템전공) ;
  • 나문수 (한양대학교 전자컴퓨터통신 공학과) ;
  • 김회율 (한양대학교 전자컴퓨터통신 공학과)
  • Received : 2014.10.14
  • Accepted : 2015.03.30
  • Published : 2015.04.25

Abstract

Fingerprint pores have proven to be useful features for fingerprint recognition and several pore-based fingerprint recognition systems have been reported recently. In order to recognize fingerprints using pore information, it is very important to extract pores reliably and accurately. Existing pore extraction methods utilize 2D model fitting to detect pore centers. This paper proposes a pore extraction method using 1D Gaussian model which is much simpler than 2D model. During model fitting process, 1D model requires less computational cost than 2D model. The proposed method first calculates local ridge orientation; then, ridge mask is generated. Since pore center is brighter than its neighboring pixels, pore candidates are extracted using a $3{\times}3$ filter and a $5{\times}5$ filter successively. Pore centers are extracted by fitting 1D Gaussian model on the pore candidates. Extensive experiments show that the proposed pore extraction method can extract pores more effectively and accurately than other existing methods, and pore matching results show the proposed pore extraction method could be used in fingerprint recognition.

지문의 땀샘(pore)은 지문인식 분야에서 아주 유용한 특징의 하나이고 땀샘에 기반한 지문인식 시스템도 많이 제안되었다. 땀샘 정보를 이용하여 지문을 인식하려면 땀샘을 정확하게 추출하는 것이 아주 중요하다. 기존의 땀샘 추출 방법은 2차원 모델정합 기법을 이용하여 땀샘 중심을 검출한다. 본 논문에서는 2차원 모델보다 간단한 1차원 가우시안 모델을 이용한 땀샘 추출 방법을 제안한다. 1차원 모델을 이용하여 모델정합하는 과정에 2차원 모델보다 적은 연산량을 필요한다는 장점이 있다. 제안하는 방법은 먼저 국부적 융선(ridge)의 방향을 계산하고 융선 마스크(ridge mask)를 생성한 다음 땀샘 중심이 주변보다 밝다는 성질을 이용하여 사이즈가 각각 $3{\times}3$$5{\times}5$인 필터로 땀샘 후보를 찾는다. 검출된 땀샘 후보에 대하여 1차원 가우시간 모델정합을 적용하여 땀샘 중심을 검출한다. 땀샘 추출 실험을 통하여 제안하는 방법은 기존의 2차원 모델에 기반한 방법보다 더 높은 땀샘 검출률을 보여주었고 땀샘 매칭 실험을 통하여 제안하는 땀샘 추출 방법이 지문인식에 사용될 수 있음을 보여준다.

Keywords

References

  1. A.K. Jain, Y. Chen, and M. Demirkus, "Pores and ridges: high-resolution fingerprint matching using level 3 features," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 15-27, Jan. 2007. https://doi.org/10.1109/TPAMI.2007.250596
  2. A.R. Roddy and J.D. Stosz, "Fingerprint features-statistical analysis and system performance estimates," Proc. IEEE, vol. 85, no. 9, pp. 1390-1421, Sep. 1997. https://doi.org/10.1109/5.628710
  3. K. Kryszczuk, A. Drygajlo, and P. Morier, "Extraction of level 2 and level 3 features for fragmentary fingerprints," Proc. the 2nd COST Action 275 Workshop, pp. 83-88, 2004.
  4. Q. Zhao, D. Zhang, L. Zhang, and N Luo, "Adaptive fingerprint pore modeling and extraction," Pattern Recognition, vol. 43, no. 8, pp. 2833-2844, Aug. 2010. https://doi.org/10.1016/j.patcog.2010.02.016
  5. M. Ray, P. Meenen, and R. Adhami, "A novel approach to fingerprint pore extraction,"Proc. the 37th South-eastern Symp. Syst. Theory, pp. 282-286, Mar. 2005.
  6. N. Parsons, J. Smith, E. Thonnes, L. Wang, and R. Wilson., "Rotationally invariant statistics for examining the evidence from the pores in fingerprints," Law, Probability and Risk, vol. 7, no. 1, pp. 1-14, Jul. 2008. https://doi.org/10.1093/lpr/mgm018
  7. L. Hong, Y. Wan, and A.K. Jain, "Fingerprint image enhancement: algorithm and performance evaluation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 777-789, Aug. 1998. https://doi.org/10.1109/34.709565
  8. http://www4.comp.polyu.edu.hk/-biometrics/.
  9. J. Cui, M.-S. Ra, and W.-Y. Kim, "Fingerprint pore matching method using polar histogram," Proc. 18th IEEE Int. Symp. Comsumer Electron., Jun. 2014.
  10. Q. Zhao, L. Zhang, D. Zhang, and N. Luo, "Direct pore matching for fingerprint recognition," Proc. Int. Conf. Biometrics, pp. 597-606, 2009.

Cited by

  1. Optimum Geometric Transformation and Bipartite Graph-Based Approach to Sweat Pore Matching for Biometric Identification vol.10, pp.5, 2018, https://doi.org/10.3390/sym10050175