DOI QR코드

DOI QR Code

Accurate Equation Analysis for RF Negative Resistance circuit at High Frequency Operation Range

고주파수 영역의 정확도 높은 RF 부성저항 회로 분석

  • Yun, Eun-Seung (School of Electrical Engineering Chungbuk National University) ;
  • Hong, Jong-Phil (School of Electrical Engineering Chungbuk National University)
  • 윤은승 (충북대학교 전자정보대학 전기 공학부) ;
  • 홍종필 (충북대학교 전자정보대학 전기 공학부)
  • Received : 2015.02.17
  • Accepted : 2015.03.31
  • Published : 2015.04.25

Abstract

This paper presents a new analysis of RF negative resistance (RFNR) circuits, known as a negative resistance generator. For accurate equation analysis of RFNR, this study examined the effects of the gate resistance and the source parasitic capacitance of the transistor. In addition, the input admittance of the conventional equation was calculated by looking into the source-terminal of the transistor, whereas that of the proposed equation was calculated by examining the gate-terminal of the transistor. The proposed equation analysis is more accurate than that of the conventional analysis, especially for higher frequency range. This paper verify the accuracy of the proposed analysis at high frequency range using the simulation.

본 논문에서는 부성저항을 생성하는 회로로 알려진 RFNR 회로에 대한 새로운 분석을 소개한다. 새로운 분석에서는 RFNR 회로에 대한 수식분석의 정확성을 높이기 위해 트랜지스터의 게이트 저항과 소스 커패시턴스에 의한 영향을 고려하였다. 기존의 분석에서는 트랜지스터의 소스를 통하여 수식을 분석하였지만 제안된 수식에서는 회로의 공진부인 트랜지스터의 게이트를 통하여 회로를 분석했다. 그 결과, 제안하는 분석은 고주파수에서 기존의 분석보다 정확도를 향상시킬 수 있었다. 본 논문에서는 시뮬레이션을 통해 고주파수에서 분석의 정확도를 검증하였다.

Keywords

References

  1. S. Ho-Jin and T. Nagatsuma, "Present and future of terahertz communications, " IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 256-263, Sep. 2011. https://doi.org/10.1109/TTHZ.2011.2159552
  2. P. H. Siegel, "Terahertz technology in biology and medicine, " IEEE Trans. Microw. Theory Tech., vol. 52, no. 10, pp. 2438-2447, Oct. 2004. https://doi.org/10.1109/TMTT.2004.835916
  3. K. Ajito and Y. Ueno, "THz chemical imaging for biological applications," IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 293-300, Sep. 2011. https://doi.org/10.1109/TTHZ.2011.2159562
  4. K. B. Cooper, et al "THz imaging radar for standoff personnel screening," IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 169-182, Sep. 2011. https://doi.org/10.1109/TTHZ.2011.2159556
  5. W. Steyaert and P. Reynaert, "A 0.54 THz signal generator in 40 nm bulk CMOS with 22 GHz tuning range, " in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), pp. 411-414, Sep. 2013.
  6. M. Adnan and E. Afshari, "A 247-to-263.5 GHz VCO with 2.6mW peak output power and 1.14 DC-to-RF efficiency in 65nm bulk CMOS," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 262-263, 2014.
  7. J. Lee and Y. Moon, "A Design of 40GHz CMOS VCO for high speed communication system," Journal of The Institute of Electronics and Information Engineers, vol. 51, no. 3, pp. 55-60, March. 2014. https://doi.org/10.5573/ieie.2014.51.3.055
  8. T. H. Lee, "The design of CMOS radio-frequency integrated circuits," Cambridge, pp. 635-645, 1998
  9. B. Razavi, "Design of analog CMOS integrated circuits", McGraw-Hill, pp. 482-530, 2001
  10. Q. J. Gu, et al "CMOS THz generator with frequency selective negative resistance tank, " IEEE Trans. THz Sci. Technol., vol. 2, no. 2, pp. 193-202, Mar. 2012. https://doi.org/10.1109/TTHZ.2011.2181922
  11. J. Cha, J. Cha, D. Jung, and S. Lee, "Analysis of fT and fmax dependence on unit gate finger width for RF performance optimization of MOSFETs" Journal of The Institute of Electronics and Information Engineers, vol. 45, SD, no. 9, pp. 21-25, Sep. 2008.
  12. B. Razavi, "A 300-GHz fundamental oscillator in 65-nm CMOS technology, " IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 894-903, Apr. 2011. https://doi.org/10.1109/JSSC.2011.2108122
  13. B. Razavi, R. H. Yan, and K. F. Lee, "Impact of distributed gate resistance on the performance of MOS devices, " IEEE Trans. Circuits and Systems.Part I, pp. 750-754, Nov. 1994.