References
- Novoselov. K.S. et al., Electric Field Effect in Atomically Thin Carbon Films, Science, Vol. 306, pp. 666-669, 2004. https://doi.org/10.1126/science.1102896
- Novoselov. K.S. et al., Two-dimensi onal gas of massless Dirac fermions in graphene, Nature, Vol. 438, pp. 197-200, 2005. https://doi.org/10.1038/nature04233
- Balandin A.A., Ghosh S., Bao W.Z., Calizo I., Teweldebrhan D., Miao F., Lau C.N., Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, Vol. 8, pp. 902-907, 2008. https://doi.org/10.1021/nl0731872
- Park S.D., Lee S.W., Kang S., Kim S.M., Bang I.C., Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments, Nuclear Engineering and Design, Vol. 252, pp. 184-191, 2012. https://doi.org/10.1016/j.nucengdes.2012.07.016
- Lee S.W., Kim K.M., Bang I.C., Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid, International Journal of Heat and Mass Transfer, Vol. 65, pp. 348-356, 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.013
- Zhang L., Fan L., Yu Z., Cen K., An experimental investigation of transient pool boiling of aqueous nanofluids with graphene oxide nanosheets as characterized by the quenching method, International Journal of Heat and Mass Transfer, Vol. 73, pp. 410-414, 2014. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.043
- Fan L.W., Li J.Q., Li D.Y., Zhang L., Yu Z.T., Cen K.F., The effect of concentration on transient pool boiling heat transfer of graphene-based aqueous nanofluids, International Journal of Thermal Sciences, Vol. 91, pp. 83-95, 2015. https://doi.org/10.1016/j.ijthermalsci.2015.01.009
- Wallace. P.R, The band theory of graphite, Physical Review Letters, Vol. 71, pp. 622-634.
- Park S.S., Kim N.J., Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement, Journal of Industrial and Engineering Chemistry, Vol. 20, pp. 1911-1915.
- Zuber N., On stability of boiling heat transfer, Transactions of the American Society of Mechanical Engineers, Vol. 80, pp. 711-714, 1958.
- Haramura Y. and Katto Y., A new hydrodynamic model of critical heat flux applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids, International Journal of Heat and Mass Transfer, Vol. 26, pp. 389-399, 1983. https://doi.org/10.1016/0017-9310(83)90043-1
- Kline S.J., McClintock F.A., Describing uncertainties in single-sample experiment, Mechanical Engineer, Vol. 75, pp. 3-8, 1953.
- Park K.J. and Jung D., Enhancement of Nucleate Boiling Heat ransfer Using Carbon Nanotubes, International Journal of Heat and Mass Transfer, Vol. 50, pp. 4499-4502, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.012
- Kim, H. D. et al., Effect of nanoparicle deposition on capillary wicking that influences the critical heat flux in nanofluids, Applied Physics Letters, Vol. 91, pp. 014104, 2007. https://doi.org/10.1063/1.2754644
Cited by
- An Experimental Study on the Solar Radiation for heat Absorption Characteristic of CNT Nanofluids vol.23, pp.6, 2019, https://doi.org/10.9726/kspse.2019.23.6.019