DOI QR코드

DOI QR Code

Thermodynamic Prediction of Groundwater-Rock Interaction Products around Underground Disposal Sites

심부 처분장 주변 지하수-암석 반응 생성물의 열역학적 예측

  • Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnam National University)
  • 이종운 (전남대학교 에너지자원공학과)
  • Received : 2014.12.26
  • Accepted : 2015.03.02
  • Published : 2015.04.28

Abstract

Thermodynamic prediction of weathering products from primary aquifer minerals around underground disposal sites was investigated. The distribution of solubility quotients for kaolinite-smectite reactions showed the trend of reaching at equilibrium with Ca-, Mg-, and Na-smectite for deep groundwaters in granitic aquifers. The values of $10^{-14.56}$, $10^{-15.73}$, and $10^{-7.76}$ were proposed as equilibrium constants between kaolinite and Ca-, Mg-, and Na-smectite end members, respectively. On stability diagrams, most of deep groundwaters were located at equilibrium boundaries between stability fields of kaolinite and smectites or on stability fields of smectites and illite. Shallow groundwaters in basic rock aquifer were plotted at the same stability areas of deep granitic groundwaters on stability diagrams. The results indicated that the primiary mineralogical composition may be important to predict weathering products in deep aquifers.

심부 처분장 주변 지하수에 의한 대수층 광물의 풍화 산물을 열역학적으로 예측하고자 하였다. 화강암질암 대수층의 지하수 화학조성을 이용하여 카올리나이트와 스멕타이트 간의 용해도 상수를 구한 결과, 심부에 위치하는 지하수에서 이들 간의 반응이 평형상태에 있음을 관찰하였으며 평형상태일 때의 용해도 상수의 대수값은 카올리나이트와 Ca-, Mg-, Na-스멕타이트의 반응에 대해 각각 약 -14.56, -15.73, -7.76을 나타내었다. 상안정도 상에서 대부분의 화강암질암 심부지하수는 카올리나이트-스멕타이트 평형 경계에 위치하거나 스멕타이트와 일라이트에 대하여 안정한 것으로 나타났다. 염기성암 대수층의 천부지하수를 분석한 결과, 화강암질암 대수층의 심부지하수와 유사한 안정 영역 상에 도시되어 스멕타이트와 일라이트를 형성하는 것으로 나타났으며, 이는 대수층을 구성하는 일차광물의 광물학적 조성이 풍화산물 형성에 큰 영향을 미칠 수 있음을 나타낸다.

Keywords

References

  1. Ball, J.W. and Nordstrom, D.K. (1991) User's manual for WATEQ4F, with revised thermodynamic database and test cases for calculating speciation of major, trace, and redox elements in natural waters. U.S. Geological Survey Open-File Report 91-183. Menlo Park, CA, USA.
  2. Bowers, T.S., Jackson, K.J. and Helgeson, H.C. (1984) Equilibrium activity diagrams. Springer-Verlag, Berlin, 397p.
  3. Brookins, D.G. (1988) Eh-pH diagrams for geochemistry. Springer- Verlag, Berlin, 176p.
  4. Drever, J.I. (1982) The geochemistry of natural waters. Prentice-Hall, Englewood Cliffs, New Jersey, 388p.
  5. Drever, J.I. (1988) The geochemistry of natural waters, 2nd ed. Prentice Hall, New Jersey, 437p.
  6. Eggleton, R.A. (1986) The relation between crystal structure and silicate weathering rates, In: Rates of chemical weathering of rocks and minerals, S.M. Colman, and D.P. Dethier, eds. Academic Press, Florida, p.21-40.
  7. Faure, G. (1991) Principles and applications of inorganic geochemistry. Macmillan, New York, 626p.
  8. Garrels, R.M. and Christ, C.L. (1965) Solutions, minerals and equilibria. Harper & Row, New York, 450p.
  9. Garrels, R.M. and Mackenzie, F.T. (1967) Origin of the chemical compositions of some springs and lakes; Equilibrium concepts in natural water systems. Am. Chem. Soc. Adv. Chem. Ser., v.67, p.222-242. https://doi.org/10.1021/ba-1967-0067.ch010
  10. Haas, J.L., Robinson Jr., G.R. and Hemingway, B.S. (1981) Thermodynamic tabulations for selected phases in the system CaO-$Al_2O_3$-$SiO_2$-$H_2O$ at 101.325 kPa (1 atm) between 273.15 and 1800 K. J. Phys. Chem. Ref. Data, 10, p.575-661. https://doi.org/10.1063/1.555645
  11. Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Amer. J. Sci., v.267, p.729-804. https://doi.org/10.2475/ajs.267.7.729
  12. Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Amer. J. Sci., v.278-A, p.1-229.
  13. Jeong, C.H. (1999) Assessment of physicochemical properties of domestic bentonite and zeolite as candidate materials for a engineered barrier in a radwaste repository. The Journal of Engineering Geology, v.9, p.89-100.
  14. Ji, S.-H. and Koh, Y.-K. (2010) The state-of-the art of groundwater flow modeling for safety assessment of a radwaste repository. Journal of the Geological Society of Korea, v.46, p.181-195.
  15. Kelley, K.K. (1962) Heats and free energies of formation of anhydrous silicates. U.S. Bur. Mines Rept. Inv., 5901.
  16. Kelley, K.K. and King, E.G. (1961) Contributions to the data on theoretical metallurgy, XIV, Entropies of the elements and inorganic compounds. U.S. Bureau of Mines Bull., 592.
  17. KIGAM (1994) Study on the geothermal resources exploration and the optimal usage (I). KIGAM Technical Report 931K101-113AP1, 235p.
  18. KIGAM (1995) Study on the geothermal resources exploration and the optimal usage (II). KIGAM Technical Report 941K101-113AP1, 376p.
  19. Kim, J. and Bae, D.-S. (2003) Thermohydromechanical behavior study on the joints in the vicinity of an underground disposal cavern. The Journal of Engineering Geology, v.13, p.171-191.
  20. Kittrick, J.A. (1971) Stability of montmorillonites: I. Belle Fourche and Clay Spur montmorillonites. Soil Sci. Soc. Am. Proc., v.35, p.140-145. https://doi.org/10.2136/sssaj1971.03615995003500010040x
  21. Krauskopf, K.B. (1979) Introduction to geochemistry, 2nd ed. McGraw-Hill, New York, 617p.
  22. Langmuir, D. (1965) Stability of carbonates in the system MgO-$CO_2$-$H_2O$. J. Geology, v.73, p.730-754. https://doi.org/10.1086/627113
  23. Lee, J.-U., Chon, H.-T. and John, Y.-W. (1997a) Geochemical characteristics of deep granitic groundwater in Korea. Journal of the Korean Society of Groundwater Environment, v.4, p.199-211.
  24. Lee, J.-U., Chon, H.-T. and John, Y.-W. (1997b) Geochemical characteristics of groundwater in Korea with different aquifer geology and temperature - Comparative study with granitic groundwater. Journal of the Korean Society of Groundwater Environment, v.4, p.212-222.
  25. Lindsay, W.L. (1979) Chemical equilibria in soils. Wiley, New York, 449p.
  26. Nesbitt, H.W. (1977) Estimation of the thermodynamic properties of Na-, Ca- and Mg-beidellites. Canadian Mineralogist, v.15, p.22-30.
  27. Nordstrom, K.N. and Jenne, E.A. (1977) Fluorite solubility equilibria in selected geothermal waters. Geochim. Cosmochim. Acta, v.41, p.175-188. https://doi.org/10.1016/0016-7037(77)90224-1
  28. Nordstrom, D.K., Valentine, S.D., Ball, J.W., Plummer, L.N. and Jones, B.F. (1984) Partial compilation and revision of basic data in the WATEQ programs. U.S. Geol. Surv. Water-Resource Investigations, 84-4186, 40p.
  29. Norton, D. (1974) Chemical mass transfer in the Rio Tanama system, west-central Puerto Rico. Geochim. Cosmochim. Acta, v.38, p.267-277. https://doi.org/10.1016/0016-7037(74)90110-0
  30. Oh, C.-S. and Kim, J.-M. (2008) Three-dimensional numerical simulation of groundwater flow and salt and radionuclide transport at a low and intermediate level radioactive waste disposal site in Gyeongju, Korea. Journal of the Geological Society of Korea, v.44, p.489-505.
  31. Park, E., Wang, S. and Lee, M. (2014a) Experimental study on the geochemical and mineralogical alterations in a supercritical $CO_2$-groundwater-zeolite sample reaction system. Economic and Environmental Geology, v.47, p.421-430. https://doi.org/10.9719/EEG.2014.47.4.421
  32. Park, E., Wang, S., Kim, S. and Lee, M. (2014b) The effects of the carbon dioxide stored in geological formations on the mineralogical and geochemical alterations of phyllosilicate minerals. Journal of the Geological Society of Korea. v.50, p.231-240.
  33. Patterson, S.H. (1971) Investigations of ferruginous bauxite and other mineral resources on Kauai and a reconnaissance of ferruginous bauxite deposits on Maui, Hawaii. U.S. Geol. Surv. Prof. Pap., 656, 65p.
  34. Pettijohn, F.J. (1975) Sedimentary rocks, 3rd ed. Harper and Row, New York, 628p.
  35. Robie, R.A. and Waldbaum, D.R. (1968) Thermodynamic properties of minerals and related substances at 298.15 K and one atmosphere pressure and at higher temperatures. U.S. Geol. Surv. Bull., 1259.
  36. Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures, U.S. Geol. Surv. Bull., v.1452, p.456.
  37. Shinn, Y.J., Park, C.-H., Huh, D.G. and Synn, J.-H. (2014) Geological modeling and simulations of $CO_2$ plume behavior in a saline formation, CO2CRC Otway Project, Australia. Journal of the Geological Society of Korea. v.50, p.387-400.
  38. Siever, R. (1957) The silica budget in the sedimentary cycle. Am. Mineralogist, v.42, p.821-841.
  39. Sung, K.-Y., Park, M.-E. and Koh, Y.-K. (2003) The role and importance of the study on geothermal water for the selection of high level radwaste repository site and the capacity assessment of natural barrier. Proceedings of the 2003 Fall Conference of Geological Society of Korea, p.71.
  40. Tardy, Y. and Duplay, J. (1992) A method of estimating the Gibbs free energies of formation of hydrated and dehydrated clay minerals. Geochim. Cosmochim. Acta, v.56, p.3007-3029. https://doi.org/10.1016/0016-7037(92)90287-S
  41. Tardy, Y. and Garrels, R.M. (1974) A method of estimating the Gibbs energies of formation of layer silicates. Geochim. Cosmochim. Acta, v.38, p.1101-1116. https://doi.org/10.1016/0016-7037(74)90007-6
  42. Wagman, D.D., Evans, W.H., Parker, V.B., Harlow, I., Bailey, S.M. and Schumm, R.H. (1968) Selected values of chemical thermodynamic properties. National Bureau of Standards Technical Notes, 270-3.
  43. Wagman, D.D., Evans, W.H., Parker, V.B., Harlow, I., Bailey, S.M. and Schumm, R.H. (1969) Selected values of chemical thermodynamic properties. National Bureau of Standards Technical Notes, 270-4.
  44. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Harlow, I., Bailey, S.M., Churney, K.L. and Nuttall, R.L. (1982) The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data, 11 (Suppl.2), p.1-392. https://doi.org/10.1063/1.555661
  45. Weast, R.C., Astle, W.J. and Beyer, W.H. (eds.) (1986) CRC handbook of chemistry and physics. CRC Press, Boca Raton, FL.
  46. Woods, T.L. and Garrels, R.M. (1987) Thermodynamic values at low temperature for natural inorganic materials: An uncritical summary. Oxford University Press, New York, 242p.