DOI QR코드

DOI QR Code

Performance of Humidifying Element Made of Cellulose and PET Composite

셀룰로오스와 PET 복합체로 만들어진 가습소자의 가습성능

  • Kim, Nae-Hyun (Division of Mechanical System Engineering, Incheon National University)
  • 김내현 (인천대학교 기계시스템공학부)
  • Received : 2014.11.08
  • Accepted : 2015.03.12
  • Published : 2015.03.31

Abstract

To control the indoor humidity, humidifier is installed in an air handling unit. Up to now, foreign product made of glasswool has been widely used as a humidifying element. In this study, a new humidifying element made of cellulose and PET was tested, and the performance was compared with Glasdek element, which is made of glasswool. Mass transfer rates and pressure drops were measured from the element which was installed at the entrance of the suction-type wind tunnel. Results show that, $j_m$ and f factors of the new element are 33%~39% larger and 0%~51% smaller than those of Glasdek. Large water absorption capacity and the smoothness of the new element appear to be responsible for the large $j_m$ and small f factor. The mass transfer effectivenesses ($j_m/f^{1/3}$) of the new element are 36%~63% larger than those of Glasdek.

실내의 습도제어를 위하여 공조기 내에는 가습소자가 설치된다. 지금까지 대부분의 가습소자는 유리섬유로 만들어진 외제품이 널리 사용되어 왔다. 본 연구에서는 이 외제품을 대체할 셀룰로오스와 PET 복합체로 만들어진 가습소자를 개발하고 유리섬유로 만들어진 Glasdek 소자의 성능과 비교하였다. 시험은 소자를 항온항습실 내에 설치된 흡입식 풍동입구에 설치하고 물질전달량과 압력손실을 측정하였다. 실험결과를 $j_m$과 f인자로 나타내었을 때, 개발품의 $j_m$값이 33%~39%크고, f인자는 개발품이 0%~51% 작게 나타났다. Glasdek에 비하여 개발품의 $j_m$값이 큰 이유는 흡수도가 월등히(50% 가량) 크기 때문이고 f인자가 작은 이유는 소자 표면이 확연히 매끄럽기 때문이다. 한편, 동일 소비동력 대비 물질전달을 나타내는 $j_m/f^{1/3}$ 의 경우, 개발품이 약 36~63% 크게 나타났다.

Keywords

References

  1. H. K. Kim, T. I. Ohm, H.K. Yoon and K. Y. Bang, "Numerical study on the humidification efficiency on humidfy module shapes of the evaporative humidifier", Korea J. Air-Cond. Ref. Eng., Vol. 25 No.1, pp. 42-47, 2014
  2. M. Barsegar, M. Layeghi, G. Ebrahimi, Y. Hamseh and M. Khorasani, "Experimental evaluction of the perfomence of cellulosic pas made of Kroft and NSCC corrugated papers as evaporative media", Energy Convestion ovel Maragement, Vol.54, pp.24-29, 2012.
  3. J. K. Jain and D. A. Hindoliya, "Experimental performance of new evaporative cooling pad materials", Sustainable Cities and Society, Vol 1. pp. 252-256, 2011. DOI: http://dx.doi.org/10.1016/j.scs.2011.07.005
  4. C. M. Liao, S. Singh and T. S. Wang, "Characterising the performance of alternative evaporative cooling media in thermal environmental control application", J. Envir, Sci. Health, Vol33, No7, pp.1391-1417, 1998. https://doi.org/10.1080/10934529809376795
  5. C. M. Liao and K. H. Chiu, "Wisd tunnel modeling the system performance of alternative cooling pads in Taiwan region", Build. Environ. Vol. 37, No.2 pp. 77-87, 2002. DOI: http://dx.doi.org/10.1016/S0360-1323(00)00098-6
  6. J. J, Lee, An Experimental Study on the Dehumidification Effectiveness for Operating Conditions of a Desiccant Rotor, Master's Thesis, Kookmin University, Republic of Korea.
  7. ASHRAE Standard 41.1, Standard method for temperature measurement, ASHRAE, 1986.
  8. ASHRAE Standard 41.2, Standard method for laboratory air-flow measurement, ASHRAE, 1986.
  9. ASHRAE Standard 41.5, Standard measurement guide, engineering analysis of experimental data, ASHRAE, 1986.
  10. R. L. Webb and N. H. Kim, Principles of Enhanced Heat Transfer, 2nd edition, Taylor and Francis Pub., 2005.