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Abstract. We determine two-interval normalized tight frame wavelet sets for real dilation

d ∈ (1,∞), and characterize all symmetric normalized tight frame wavelet sets. We also

construct a normalized tight frame wavelet set which has an infinite number of components

accumulating at the origin. These normalized tight frame wavelet sets and their closures

possess the same measure. Finally an example of a normalized tight frame wavelet set is

provided whose measure is strictly less than the measure of its closure.

1. Introduction

Wavelet sets introduced by Dai and Larson in ‘Wandering vectors for unitary
systems and wavelets, Mem. Amer. Math. Soc. 134 (1998)’ have been put into the
frame and tight frame setting by Han and Larson in [7]. For dilation d ∈ (1,∞),
the orthonormal wavelets and the tight frames have been characterized by Chui and
Shi in [3]. Wavelet sets having certain number of components have been studied
by many workers in [1, 2, 6, 7, 10 and 11]. Characterizations of two-interval,
three-interval and four-interval wavelet sets have been obtained for dilation d using
different methods.

After providing preliminaries in Section 2, we characterize two-interval frame
wavelet sets for dilation d in Section 3. Also, following the technique sponsored by
Arcozzi, Behera and Madan to obtain 2n-interval symmetric wavelet sets for the
dyadic dilation, we construct symmetric frame wavelet sets with real dilation d in
Section 4. In Section 5, we provide a frame wavelet set having infinite number of
components that accumulates at the origin. Noting that the frame wavelet sets
constructed in Section 4 and Section 5 have the measure equal to the measure of
their respective closures, we provide a frame wavelet set in Section 6 which possesses
a property that its measure is strictly less than that of its closure.
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2. Preliminaries

A sequence {xj}j∈J , J being a countable index set, of vectors in a Hilbert space
H is called a frame if there are constants A,B > 0 such that

A ∥x∥2 ≤
∑
j∈J

|⟨x, xj⟩|2 ≤ B ∥x∥2

for all x ∈ H, where ⟨·, ·⟩ denotes the inner product on H. The optimal constants
are called the frame bounds. If the frame bounds are equal, the frame is called
to be tight and if frame bounds equal 1, it is called a normalized tight frame. A
function ψ ∈ L2(R) is called a (tight, normalized tight) frame wavelet for dilation
d ∈ (1,∞) if the system {ψj,k = dj/2ψ(dj · −k)}j,k∈Z is a (tight, normalized tight)
frame for L2(R). If the Fourier transform of a (tight, normalized tight) frame
wavelet equals the characteristic function on a measurable set E, then the set E
is called a (tight, normalized tight) frame wavelet set. The Fourier transform of a
function f ∈ L1(R) ∩ L2(R) is defined for ξ ∈ R by

f̂(ξ) =

∫
R
f(x)e−ixξdx.

Taking advantage of the fact that L1(R) ∩ L2(R) is dense in L2(R), the definition
of Fourier transform extends to the whole of L2(R).

In order to characterize a frame wavelet set, we provide the following well known
definition [9].

Definition 2.1. Let E and F be two measurable subsets of R. Then

(A) E is said to be 2π-translation congruent to F , if there exists a measurable
partition {En : n ∈ Z} of E such that {En + 2nπ : n ∈ Z} is a measurable
partition of F .

(B) E is said to be d-dilation congruent to F , if there exists a measurable partition
{En : n ∈ Z} of E such that {dnEn : n ∈ Z} is a measurable partition of F .

From [3, Corollary 4] and [5] we conclude that ψ ∈ L2(R), defined by ψ̂ = χE for a
measurable set E ⊂ R, provides a tight frame {ψj,k}j,k∈Z with dilation d ∈ (1,∞),
if and only if E satisfies

(i)
∑
k∈Z

χE(ξ + 2kπ) ≤ 1, ξ ∈ R ;

and

(ii)
∑
j∈Z

χE(d
jξ) = m, ξ ∈ R, for some m ∈ N.
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Equivalently, a measurable set E in R is a tight frame wavelet set if and only if
the following hold:

(i)′ E is 2π-translation congruent to a subset of [c, c+ 2π], c ∈ R;
and

(ii)′ E is d-dilation congruent to (−dma,−a) ∪ (b, dmb), a, b > 0 for some m ∈ N.

It is pertinent to mention that a set in R which is both 2π-translation congruent
and d-dilation congruent to a tight frame wavelet set is itself a tight frame wavelet
set.

Following are some examples of tight frame wavelet sets.

Example 2.2. For l, n,m ∈ N and k ≥ 2, the set
(
− 2π

km ,− 2π
km+n

)
∪
(

2π
km+l ,

2π
km

)
is

a tight frame wavelet set for dilation k.

Example 2.3. For k ≥ 2 and A,B ⊆ N, the set
∪

n∈A
m∈B

((
− 2π

km ,− 2π
km+1

)
∪(

2π
kn+1 ,

2π
kn

))
is a tight frame wavelet set for dilation k.

Now onwards, we call a normalized tight frame wavelet set just a frame wavelet
set. Hence, for a frame wavelet set the value of m in (ii), and equivalently in (ii)′,
is 1. It is also to be mentioned that all equalities in this paper hold in the sense of
almost everywhere.

3. A Characterization of Two-interval Frame Wavelet Sets with Real
Dilation d

In this Section, we provide a characterization of frame wavelet sets having two
intervals.

A measurable set E ⊂ R having two intervals must be of the form (−da,−a) ∪
(b, db) to partition R by dilation d, for a, b > 0. Also, for E to be translation
congruent to a subset of [c, c+ 2π], c ∈ R, we must have

−a+ 2nπ ≤ b and − da+ 2(n+ 1)π ≥ db

for some n ∈ N, i.e.,

(3.1) a+ b ≥ 2nπ and d(a+ b) ≤ 2(n+ 1)π

for some n ∈ N.

Therefore, we have the following theorem.

Theorem 3.1. A measurable set E in R is a frame wavelet set having two inter-
vals with dilation d if and only if E = (−da,−a)∪(b, db) for a, b > 0 satisfying (3.1).

Following are some examples of frame wavelet sets having two intervals.
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Example 3.2. For n,m ∈ N and k ≥ 2, the set
(
− 2π

km ,− 2π
km+1

)
∪
(

2π
kn+1 ,

2π
kn

)
is a

frame wavelet set for d = k. In particular, the set
(
− 2π

2m ,−
2π

2m+1

)
∪
(

2π
2n+1 ,

2π
2n

)
is a

dyadic frame wavelet set for n,m ∈ N.

Example 3.3. For d = 5
3 , the set [− 10

3 π,−2π] ∪ [ 25π,
2
3π] is a frame wavelet set.

Example 3.4. The set [−4π,−3π] ∪ [3π, 4π] is a frame wavelet set with dilation
d = 4

3 , which is a wavelet set for the same dilation.

4. A Construction of Symmetric Frame Wavelet Sets with Real Dilation
d

Following the method described in [1] to construct symmetric dyadic wavelet
sets based on MSF polygonals we construct some frame wavelet sets. In addition,
a characterization of all symmetric frame wavelet sets with real dilation d > 1 has
been provided.

In order to remain as self contained as possible, we enumerate following symbols
and terminologies.

Consider the set D of all points Pj = (dλj , dλjmj) in the euclidean plane for
mj ∈ N0 = N ∪ {0}, and λj ∈ Z. For a finite set P = {P1, P2, ..., Pn} in D,

(4.1) aj = −d
λjmj − dλj+1mj+1

dλj − dλj+1

denotes the negative of the slope of the line joining Pj and Pj+1.

We call the set P a frame polygonal if

(4.2) λ1 = 0, 0 = a0 < a1 < ... < an ≤ 1

2

and

(4.3) dλn(mn + an) = dm1.

In [1], for d = 2 and an = 1
2 , the frame polygonal is called the MSF polygonal.

Theorem 4.1. For a frame polygonal P, let

Ij = ([aj−1, aj ] +mj) · 2π j = 1, 2, ..., n.

Then K = K+ ∪ K− with K+ =
∪n

j=1 Ij and K− = −K+ is a symmetric frame
wavelet set.

Proof. Due to (4.2) and the way Ij ’s are defined, K+ is 2π-translation congruent
to a subset of [0, π]. Thus, by the symmetry, K is 2π-translation congruent to a
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subset of [−π, π].

Next, let Hj = dλjIj , j = 1, 2, ..., n. Using (4.1) and (4.3) one can show that∪n
j=1Hj has the form [α, dα] for some α > 0. Therefore, K+ is d-dilation congruent

to [α, dα]. By the symmetry again, K is d-dilation congruent to [−dα,−α]∪ [α, dα]
for some α > 0. Hence, K is a frame wavelet set. 2

Now we illustrate the construction by means of some examples.

Example 4.2. For n = 3, d = 4 and a3 = 1
4 , let P1 = (1, 4s(4t + 1)), P2 =

(4v, 0), P3 = (4s+2, 4s+2t), where s, t, v ∈ N0 with t ≥ 1 and 4v > 4s+2(4t+1). Then

P = {P1, P2, P3} is a frame polygonal with a1 = 4s(4t+1)
4v−1 , a2 = 4s+2t

4v−4s+2 , a3 = 1
4 .

Hence

I1 =

([
4s(4t+ 1),

4s+v(4t+ 1)

4v − 1

])
· 2π

I2 =

([
4s(4t+ 1)

4v − 1
,

4s+2t

4v − 4s+2

])
· 2π

I3 =

([
4vt

4v − 4s+2
,
4t+ 1

4

])
· 2π.

Therefore, with K+ =
∪3

i=1 Ii and K− = −K+, K = K+ ∪ K− is a frame
wavelet set.

Example 4.3. For n = 3, d = 2 and a3 = 1
2p , p ∈ N, the frame wavelet set is found

to be

±
([

2s(2pt+ 1),
2s+v(2pt+ 1)

2v − 1

]
∪
[
2s(2pt+ 1)

2v − 1
,

2s+p+1t

2v − 2s+p+1

]

∪
[

2vt

2v − 2s+p+1
,
2pt+ 1

2p

])
· 2π

on taking P1 = (1, 2s(2pt+1)), P2 = (2v, 0), P3 = (2s+p+1, 2s+p+1t), where s, t, v ∈
N0 with t ≥ 1 and 2v > 2s+p+1(2pt+ 1).

Example 4.4. For n = 2, d = 2 and a3 = 1
2p , p ∈ N, let P1 = (1, 2l(2t+ 1)), l, t ∈

N0. Using (4.3) we can find P2 = (2l+p+1, 2l+2t). Then {P1, P2} forms a frame
polygonal if

a1 =
2l − 2l+1t

2l+p+1 − 1
> 0 ,

which shows that t must be 0 and hence we get the frame wavelet set K = K+∪K−,
where

K+ =

([
2l

2l+p+1 − 1
,
1

2p

]
∪
[
2l,

22l+p+1

2l+p+1 − 1

])
· 2π
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and K− = −K+.

In the following theorem we characterize all symmetric frame wavelet sets with
real dilation d > 1.

Theorem 4.5. A measurable set E ⊂ R is a symmetric frame wavelet set with
dilation d > 1 if and only if E = E+ ∪ E− with E+ =

∪
α∈A Iα, and E

− = −E+,
where

(a) A ⊆ {1, 2, ..., n},

(b) for j = 1, 2, ..., n, Ij = (ϵj [aj−1, aj ] +mj) · 2π with ϵj ∈ {−1, 1} , mj ∈ N0

and aj ’s satisfying (4.2), and,

(c)
∪

α∈AHα, where Hα = dλτ(α)Iτ(α), α ∈ A, λj ∈ Z, τ is a permutation on A,
has the form [b, db] for some b > 0.

Proof. The definition of Ij ’s is equivalent to the condition that E is 2π-translation
congruent to a subset of [−π, π]. Also, the definition and the condition on Hα’s is
equivalent to the condition for E to be d-dilation congruent to [−db,−b]∪ [b, db]. 2

Note that the frame wavelet sets constructed in this Section have finite number
of components. In the next Section we construct a frame wavelet set which has an
infinite number of components and accumulates at the origin.

5. A Construction of a Frame Wavelet Set Accumulating at the Origin

For n, p ∈ N, n ≥ 2, let K+ = (K1 ∪K2) · 2π, where

K1 =

[
2n−2

2n+p−1 − 1
,
1

2p

]
and

K2 =

[
2n−2,

22n+p−3

2n+p−1 − 1

]
;

and K− = −K+. Then K = K+ ∪ K− is a frame wavelet set by Example 4.4.

Put an = 2n−2

2n+p−1−1 . Thus K1 =
[
an,

1
2p

]
and K2 =

[
2n−2, 2n+p−1an

]
. For

0 < ϵ < 1
2p+1

(
2n+p−2−1
2n+p−1−1

)
, construct

S1 =
[an
2

+
ϵ

2n+p−1
,
an
2

+ ϵ
]
,

S2 =

[
an + 2ϵ,

1

2p

]



On Normalized Tight Frame Wavelet Sets 133

and
S3 =

[
2n+p−1an, 2

n+p−1an + 2ϵ
]
;

and set
E0 = S1 + 2n−2, F0 = 2−(n+p)E0,

El = Fl−1 + 2n−2, Fl = 2−(n+p+l)El, l ∈ N.

Let

(5.1) F+ =

[
(K2 −

∞∪
l=0

El) ∪
∞∪
l=0

Fl ∪ S1 ∪ S2 ∪ S3

]
· 2π.

Noting that El ⊂ K2 for all l ∈ N0, we can see that

1

2n+p−1
S3 ∪ 2S1 ∪ S2 = K1

and

(K2 −
∞∪
l=0

El) ∪ (
∞∪
l=0

2n+p+lFl) = K2.

Thus F+ is 2-dilation congruent to K+. Also, we have

S2 ∪ (S3 − 2n−2) = K1

and

(K2 −
∞∪
l=0

El) ∪ (
∞∪
l=0

(Fl + 2n−2)) ∪ (S1 + 2n−2) = K2.

Thus F+ is 2π-translation congruent to K+.

Let F− = −F+ and F = F+∪F−. Then, by the symmetry, F is both 2-dilation
congruent and 2π-translation congruent to K. Hence F is a frame wavelet set. Thus
we conclude the following theorem.

Theorem 5.1. The set F = F+∪F−, where F+ is given by (5.1) and F− = −F+,
is a frame wavelet set that accumulates at the origin.

It is clear that F contains an infinite number of components and accumulates
at the origin. Also, it can be noticed here that F and the closure F̄ of F have the
same measure which is equal to that of K. In the next Section we provide a frame
wavelet set whose measure is strictly less than that of its closure.

6. A Construction of a Frame Wavelet Set whose Measure is Strictly
Less than the Measure of its Closure

In [12], it is shown that there is a wavelet set E such that its closure Ē satisfies
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∣∣Ē∣∣ > |E|, where |E| represents the measure of the set E. We show that the same
is true for a frame wavelet set. Precisely, we construct a frame wavelet set for the
dyadic dilation whose measure is strictly less than the measure of its closure.

Consider a countable dense set {ωn}∞n=1 in the interval
[
π
3 ,

2π
3

]
.

Let

F1 =
∞∪

n=1

((
ωn − π

2n+3
, ωn +

π

2n+3

)
∩
[
π

3
,
2π

3

])
,

F2 =

[
2π

3
,
4π

3

]
− 2F1 and F3 =

[
−2π

3
,−π

3

]
.

Set

K =
3∪

n=1

Fi.

We claim that K is a frame wavelet set. For, 2F1 ∪ F2 =
[
2π
3 ,

4π
3

]
and F3 =[

− 2π
3 ,−

π
3

]
, thus K is 2-dilation congruent to the set (−2α,−α)∪ (β, 2β) for α = π

3

and β = 2π
3 . Also, F1 ⊂

[
π
3 ,

2π
3

]
, F2 ⊂

[
2π
3 ,

4π
3

]
, F3 + 2π ⊂

[
4π
3 ,

5π
3

]
and hence

K is 2π-translation congruent to a subset of
[
π
3 ,

5π
3

]
⊂

[
π
3 ,

π
3 + 2π

]
. Thus K is a

frame wavelet set for the dyadic dilation.

Next we show that
∣∣K̄∣∣ > |K|. Since {ωn}∞n=1 is dense in

[
π
3 ,

2π
3

]
, we have

F̄1 =
[
π
3 ,

2π
3

]
and hence

∣∣F̄1

∣∣ = π
3 , while |F1| ≤ π

4 . Thus |F1| <
∣∣F̄1

∣∣. Also,

|Fi| ≤
∣∣F̄i

∣∣ for i = 2, 3. Therefore

|K| =

∣∣∣∣∣
3∪

n=1

Fi

∣∣∣∣∣ =
3∑

n=1

|Fi| <
3∑

n=1

∣∣F̄i

∣∣ = ∣∣K̄∣∣ .
Hence K is a frame wavelet set whose measure is strictly less than the measure

of its closure. Thus we have,

Theorem 6.1. There exists a frame wavelet set K such that |K| is strictly less
than

∣∣K̄∣∣.
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