References
- R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math., 45(2001), 25-39.
-
Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on
$l_1$ , J. Math. Anal. Appl., 228(1998), 467-482. https://doi.org/10.1006/jmaa.1998.6161 -
Y. S. Choi and S. G. Kim, The unit ball of
$P(^2l^2_2)$ , Arch. Math. (Basel), 71(1998), 472-480. https://doi.org/10.1007/s000130050292 -
Y. S. Choi and S. G. Kim, Extreme polynomials on
$c_0$ , Indian J. Pure Appl. Math., 29(1998), 983-989. -
Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space
$P(^2l_1)$ , Results Math., 36(1999), 26-33. https://doi.org/10.1007/BF03322099 -
Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces
$P(^2l^2_p)$ (p =1,2;${\infty}$ ), Indian J. Pure Appl. Math., 35(2004), 37-41. - S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).
- S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand., 92(2003), 129-140.
-
B. C. Grecu, Geometry of 2-homogeneous polynomials on lp spaces, 1 < p ,<
${\infty}$ ;, J. Math. Anal. Appl., 273(2002), 262-282 . https://doi.org/10.1016/S0022-247X(02)00217-2 - B. C. Grecu, G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Unconditional constants and polynomial inequalities, J. Approx. Theory, 161(2009), 706-722. https://doi.org/10.1016/j.jat.2008.12.001
-
S. G. Kim, Exposed 2-homogeneous polynomials on
$P(^2l^2_p)$ $1{\leq}p{\leq}{\infty}$ , Math. Proc. Royal Irish Acad., 107(2007), 123-129. https://doi.org/10.3318/PRIA.2007.107.2.123 -
S. G. Kim, The unit ball of
$L_s(^2l^2_{\infty})$ , Extracta Math., 24(2009), 17-29. -
S. G. Kim, The unit ball of
$P^2d_*(1,w)^2$ , Math. Proc. Royal Irish Acad., 111(2)(2011), 79-94. -
S. G. Kim, The unit ball of
$L_s(^2d_*(1;w)^2)$ , Kyungpook Math. J., 53(2013), 295-306. https://doi.org/10.5666/KMJ.2013.53.2.295 -
S. G. Kim, Smooth polynomials of
$P(^2d_*(1,w)^2)$ , Math. Proc. Royal Irish Acad., 113A(1)(2013), 45-58. -
S. G. Kim, Extreme bilinear forms of
$L(^2d_*(1,w)^2)$ , Kyungpook Math. J., 53(2013), 625-638. https://doi.org/10.5666/KMJ.2013.53.4.625 -
S. G. Kim, Exposed symmetric bilinear forms of
$L(^2d_*(1,w)^2)$ , Kyungpook Math. J., 54(2014), 341-347. https://doi.org/10.5666/KMJ.2014.54.3.341 - S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131(2003), 449-453. https://doi.org/10.1090/S0002-9939-02-06544-9
- J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl., 305(2005), 219-226. https://doi.org/10.1016/j.jmaa.2004.11.011
- G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105(2009), 147-160.
- G. A. Munoz-Fernandez and J.B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340(2008), 1069-1087. https://doi.org/10.1016/j.jmaa.2007.09.010
- R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl., 221(1998), 698-711. https://doi.org/10.1006/jmaa.1998.5942
Cited by
- Extreme bilinear forms on $$\mathbb {R}^n$$Rn with the supremum norm vol.77, pp.2, 2018, https://doi.org/10.1007/s10998-018-0246-z