DOI QR코드

DOI QR Code

Range Kernel Orthogonality and Finite Operators

  • Received : 2011.03.21
  • Accepted : 2014.03.21
  • Published : 2015.03.23

Abstract

Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H into itself. Let $A,B{\in}\mathcal{L}(H)$ we define the generalized derivation ${\delta}_{A,B}:\mathcal{L}(H){\mapsto}\mathcal{L}(H)$ by ${\delta}_{A,B}(X)=AX-XB$, we note ${\delta}_{A,A}={\delta}_A$. If the inequality ${\parallel}T-(AX-XA){\parallel}{\geq}{\parallel}T{\parallel}$ holds for all $X{\in}\mathcal{L}(H)$ and for all $T{\in}ker{\delta}_A$, then we say that the range of ${\delta}_A$ is orthogonal to the kernel of ${\delta}_A$ in the sense of Birkhoff. The operator $A{\in}\mathcal{L}(H)$ is said to be finite [22] if ${\parallel}I-(AX-XA){\parallel}{\geq}1(*)$ for all $X{\in}\mathcal{L}(H)$, where I is the identity operator. The well-known inequality (*), due to J. P. Williams [22] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [23]). In [16], the author showed that a paranormal operator is finite. In this paper we present some new classes of finite operators containing the class of paranormal operators and we prove that the range of a generalized derivation is orthogonal to its kernel for a large class of operators containing the class of normal operators.

Keywords

References

  1. J. H. Anderson, On normal derivation, Proc. Amer. Math. Soc., 38(1973), 135-140. MR0312313 https://doi.org/10.1090/S0002-9939-1973-0312313-6
  2. J. H. Anderson and C. Foias, Properties which normal operator share with normal derivation and related operators, Pacific. Jour. Math., (1973), 313-325.
  3. T. Ando, Operators with a norm condition, Acta. Sci. Math.(Szeged), 33(1972), 169-178.
  4. Aluthge, On p-hyponormal operators for 0 < p < 1, Integr. Equat. Oper. Th., 13(1990), 307-315. https://doi.org/10.1007/BF01199886
  5. S. K. Berberian, Approximate proper values, Proc. Amer. Math. Soc., 13(1962), 111-114. https://doi.org/10.1090/S0002-9939-1962-0133690-8
  6. M. Fujii, C. Himeji and A. Matsumoto, Theorems of Ando and Saito for p-hyponormal operators, Math. Japonica, 39(1994), 595-598.
  7. T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and severel related classes, Scientiae Mathematicae 1(1998), 389-403.
  8. M. Fujii, D. Jung, S. H. Lee , M. Y. Lee and R. Nakamoto. Some classes of operators related to paranormal and log-hyponormal operators, Math. Japan, 51(3)(2000), 395-402.
  9. M. Fujii, S. Izumino and R. Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta inequality and the Holder-Mc. Carthy inequality, Nihonkai Math. J., 1(5)(1994), 61-67.
  10. P. R. Halmos, Hilbert space problem book, springer Verlag, New York (1962).
  11. D. A. Herrero, Approximation of Hilbert space operator I, Pitman Advanced publishing program, Boston, London-Melbourne (1982).
  12. I. H. Jeon, K. Tanahashi and A. Uchiyama,On quasisimilarity for log-hyponormal operator, Glasgow Math. J., 46(2004), 169-176. https://doi.org/10.1017/S0017089503001642
  13. S. Mecheri, Finite operators., Demonstratio Math., 35(2002), 355-366.
  14. S. Mecheri, Non-normal derivation and orthogonality., Proc. Amer. Math. Soc., 133 (2005), 759-762. https://doi.org/10.1090/S0002-9939-04-07609-9
  15. S. Mecheri, K. Tanahashi and A. Uchiyama, Fuglede-Putnam's theorem for class ${\mathscr{y}}$ or p-hyponormal operators, Bull. Korean Math. Soc., 4(2006), 747-753.
  16. S. Mecheri, Finite Operators and Orthogonality, Nihonkai Math. J., 19(2008), 53-60.
  17. S. M. Patel, On Intertwining p-hyponormal operators, Indian J. Math., 38(1996), 287-290.
  18. D. Senthilkumar, P. Mahaswari, Weyl's theorem for algebraically absolute-(p,r)-paranormal operators, Banach J. Math. Anal., 5(2011), 29-37. https://doi.org/10.15352/bjma/1313362977
  19. K. Tanahashi, On log-hyponormal operators, Integral equations Operator Theory., 34(1999), 364-372. https://doi.org/10.1007/BF01300584
  20. A. Uchiyama, Inequalities of Purnam and BergerShaw for p-quasihyponormal operators, Integr. Equat. Oper. Th., 34(1999), 179-180.
  21. A. Uchiyama and T. Yoshino,On the class ${\mathscr{y}}$ operators, Nihonkai Math. J., 8(1997), 179-194.
  22. J. P. Williams, Finite operators., Proc. Amer. Math. Soc., 26(1970), 129-135. https://doi.org/10.1090/S0002-9939-1970-0264445-6
  23. H. Wielandt, ber die Unbeschrnktheit der Operatoren der Quantenmechanik. (German) Math. Ann., 121(1949), 21. https://doi.org/10.1007/BF01329611
  24. T. Yamazaki and M. Yanagida, A further generalization of paranormal operators, Sci. Math., 2000, 3: 23-31.