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INSERTION-OF-FACTORS-PROPERTY WITH FACTORS

MAXIMAL IDEALS

Hai-Lan Jin, Da Woon Jung, Yang Lee, Sung Ju Ryu, Hyo Jin Sung,

and Sang Jo Yun

Abstract. Insertion-of-factors-property, which was introduced by Bell,
has a role in the study of various sorts of zero-divisors in noncommutative
rings. We in this note consider this property in the case that factors are
restricted to maximal ideals. A ring is called IMIP when it satisfies such
property. It is shown that the Dorroh extension of A by K is an IMIP ring
if and only if A is an IFP ring without identity, where A is a nil algebra
over a field K. The structure of an IMIP ring is studied in relation to
various kinds of rings which have roles in noncommutative ring theory.

1. Introduction

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Given a ring R, N0(R), N∗(R), N∗(R), N(R), BR(R), and
J(R) denote the Wedderburn radical (the sum of all nilpotent ideals), the
prime radical, the upper nilradical (i.e., the sum of all nil ideals), the set of
all nilpotent elements, the Brown-McCoy radical (i.e., the intersection of all
maximal ideals), and the Jacobson radical of R, respectively. Note N0(R) ⊆
N∗(R) ⊆ N∗(R) ⊆ N(R) and N∗(R) ⊆ J(R) ⊆ BR(R). The n by n full (resp.,
upper triangular) matrix ring over R is denoted by Matn(R) (resp., Un(R)),
and denote by Eij the matrix with (i, j)-entry 1 and elsewhere zero. Z denotes
the ring of integers, and Zn denotes the ring of integers modulo n. For a ring
R, R[x] (resp., R[[x]]) denotes the polynomial (resp., power series) ring with
an indeterminate x over R. For f(x) ∈ R[x], let Cf(x) denote the set of all
coefficients of f(x).

Insertion-of-factors-property has done important roles in noncommutative
ring theory and module theory. Due to Bell [3], a ring R (possibly without
identity) is called to satisfy the insertion-of-factors-property (simply, an IFP

ring) if ab = 0 implies aRb = 0 for a, b ∈ R. Narbonne [15] and Shin [16]
used the terms semicommutative and SI for the IFP, respectively. It is easily
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checked that N∗(R) = N(R) when R is an IFP ring. The class of IFP rings
is closed under subrings obviously. A ring R (possibly without identity) is
called reduced if N(R) = 0. The class of IFP rings contains both commutative
rings and reduced rings. But there exist many non-reduced commutative rings
(e.g., Znl for n, l ≥ 2), and many noncommutative reduced rings (e.g., direct
products of noncommutative domains). A ring is usually called Abelian if each
idempotent is central. It is easily checked that IFP rings are Abelian.

The concept of IFP does not pass to polynomial rings by [9, Example 2].
But we have the following fact related to (maximal) ideals of the ground ring
R when R[x] is IFP.

Remark 1.1. Let R be a ring. The following conditions are equivalent:
(1) R[x] is IFP;
(2) xnR[x] is an IFP ring for all n ≥ 1;
(3) M + xnR[x] is an IFP ring for all (maximal) ideals M of R and n ≥ 1.

Proof. (1) ⇒ (3) and (3) ⇒ (2) are obvious, so it suffices to show (2) ⇒ (1).
Assume that the condition (2) holds. Let f(x)g(x) = 0 for f(x), g(x) ∈ R[x].
Then (xnf(x))(xng(x)) = 0. Since xnR[x] is IFP, (xnf(x))(xnh(x))(xng(x)) =
0 for all h(x) ∈ R[x]. This yields f(x)h(x)g(x) = 0, proving that R[x] is
IFP. �

In Remark 1.1, ab = 0 for a, b ∈ R implies aMb = 0 for any ideal M of R.
We now introduce the following definition.

Definition 1.2. A ring R is said to satisfy the insertion-of-maximal-ideal-

property (simply, an IMIP ring) if aMb = 0 for some maximal ideal M of R
whenever ab = 0 for all a, b ∈ R.

Every simple ring is clearly IMIP, we note that there exist many non-simple
IFP rings (e.g., Z). IFP rings are clearly IMIP, the converse is not true by the
existence of non-Abelian simple rings (e.q., Mat2(Z2)).

Proposition 1.3. (1) If R is an IMIP ring, then N0(R) = N∗(R) = N∗(R).
(2) If R is an IMIP ring with J(R) nil, then N0(R) = N∗(R) = N∗(R) =

J(R).
(3) If R is an IMIP ring in which every prime ideal is maximal, then

N0(R) = N∗(R) = N∗(R) = J(R) = BR(R).
(4) If R is an IFP ring, then N0(R) = N∗(R) = N∗(R) = N(R).
(5) Let R be a ring such that R has distinct maximal ideals M1,M2 satisfying

M1 ∩M2 = 0. Then each Mi is an IFP ring without identity if and only if R
is IFP.

Proof. (1) Let R be an IMIP ring and a ∈ N∗(R). Then an = 0 for some
n ≥ 1. Since R is IMIP and every maximal ideal of R contains N∗(R), we
have a(RaR)an−1 = 0 and so for any b1 ∈ RaR, we have ab1a(RaR)an−2 = 0.
Continuing in this manner, we finally get

ab1ab2a · · · abn−1a = 0,
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where bi ∈ RaR for i = 1, 2, . . . , n − 1. This yields (RaR)2n−1 = 0, entailing
a ∈ N0(R).

(2) and (3) come from (1).
(4) is obvious, since any IFP ring R is IMIP with N∗(R) = N(R).
(5) It suffices to show the necessity. Let ab = 0 for a, b ∈ R. SinceM1+M2 =

R, a = a1 + a2 and b = b1 + b2 for some a1, b1 ∈ M1 and a2, b2 ∈ M2. From
M1 ∩M2 = 0, we get 0 = ab = (a1 + a2)(b1 + b2) = a1b1 + a1b2 + a2b1 + a2b2 =
a1b1 + a2b2. This yields a1b1 = −a2b2 ∈ M1 ∩M2 = 0, entailing a1b1 = 0 and
a2b2 = 0. But since each Mi is IFP, we have a1M1b1 = 0 and a2M2b2 = 0.
Note that both a1M2b1 and a2M1b2 are contained in M1∩M2, so each of them
must be zero. Consequently we have

a1Rb1 = a1(M1 +M2)b1 = 0 and a2Rb2 = a2(M1 +M2)b2 = 0.

So, for all r ∈ R, we obtain

arb = (a1 + a2)r(b1 + b2) = a1rb1 + a1rb2 + a2rb1 + a2rb2 = a1rb1 + a2rb2 = 0,

noting a1rb2, a2rb1 ∈ M1 ∩M2. Thus R is IFP. �

In the following one can see a ring which satisfies (2) and (3) in Proposition
1.3. Let A be an algebra (with or without identity) over a commutative ring
S. Due to Dorroh [5], the Dorroh extension of A by S is the Abelian group
D = A⊕ S with multiplication given by

(r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2),

where ri ∈ A and si ∈ S.

Example 1.4. Let K be a field and A be a nonzero algebra over K such that
A2 = 0 (e.g., A = ( 0 K

0 0 ) ⊂ U2(K)). Set R be the Dorroh extension of A by K.
Let (s, t) ∈ R with t 6= 0. Then (s, t) is a unit in R with (s, t)−1 = (−t−2s, t−1).
This implies that A⊕{0} is the unique maximal ideal of R, M say. Therefore R
is a commutative ring with N0(R) = N∗(R) = N∗(R) = J(R) = BR(R) = M .

In the following we observe a connection between the IMIP and the IFP.

Proposition 1.5. Let A be a nil algebra over a field K, and R be the Dorroh

extension of A by K. Then R is IMIP if and only if A is an IFP ring without

identity.

Proof. We first claim that every (x, y) ∈ R is a unit if y 6= 0. Say xn = 0 for
some integer n ≥ 2. Then (xy−1)n = 0, and this yields

(xy−1, 1)((0, 1)− (xy−1, 0) + · · ·+ (−1)n−1(xy−1, 0)n−1)

= ((0, 1) + (xy−1, 0))((0, 1)− (xy−1, 0) + · · ·+ (−1)n−1(xy−1, 0)n−1)

= ((0, 1) + (xy−1, 0))((0, 1)− (xy−1, 0) + · · ·+ (−1)n−1((xy−1)n−1, 0))

= (0, 1).
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Similarly ((0, 1) − (xy−1, 0) + · · · + (−1)n−1(xy−1, 0)n−1)((0, 1) + (xy−1, 0) =
(0, 1). Thus we have

(x, y)−1 = (0, y−1)((0, 1)− (xy−1, 0) + · · ·+ (−1)n−1(xy−1, 0)n−1),

noting (x, y)(0, y−1) = (xy−1, 1). The above claim leads that A ⊕ {0} is the
unique maximal ideal of R, M say.

Suppose that ab = 0 for a, b ∈ A. Then (a, 0)(b, 0) = 0. If R is IMIP, then
0 = (a, 0)M(b, 0) = (aAb, 0), recalling that M is the unique maximal ideal of
R. So we get aAb = 0, proving that A is IFP.

Conversely, let A be an IFP ring and suppose that (a, c)(b, d) = 0 for
(a, c), (b, d) ∈ R. Then c = d = 0 by the claim above; hence ab = 0. Since A is
IFP, we have aAb = 0. This yields (a, c)M(b, d) = (aAb, 0) = 0, proving that
R is IMIP. �

One may ask whether the IMIP may pass to Dorroh extensions, considering
Proposition 1.5. But the following argument answers negatively. Consider the
simple nil algebra Ā over a field K constructed by Smoktunowicz [17, Theorem
6.6]. Then Ā is an IMIP ring without identity. Note that Ā has a nilpotent
element a with a2 = 0 and aba 6= 0 for b ∈ Ā. Here assume that the Dorroh
extension R of Ā by K is IMIP. Then (aĀa, 0) = (a, 0)(Ā ⊕ 0)(a, 0) = 0, a
contradiction. Thus R cannot be IMIP.

In the following we see a relation between simple and IMIP, via matrix rings.

Theorem 1.6. A ring R is simple if and only if Matn(R) is an IMIP ring for

all n ≥ 2.

Proof. If R is a simple ring, then Matn(R) is also simple (hence IMIP) for all
n ≥ 2.

Conversely, let M = Matn(R) be an IMIP ring for n ≥ 2 and assume on
the contrary that R is not simple. Let j 6= s for j, s ∈ {1, 2, , . . . , n}. Then
EijEst = 0 for all i, t ∈ {1, 2, , . . . , n}. Since M is IMIP and non-simple, there
exists a nonzero maximal ideal I of M such that EijIEst = 0. This yields
MEijMIMEstM = 0. Let 0 6= (αxy) ∈ I such that αuv 6= 0. Then

0 6= αuvE11 = E1iEijEj1E1u(αxy)Ev1E1sEstEt1 ∈ MEijMIMEstM = 0,

a contradiction. Thus such a nonzero maximal ideal I cannot exist in M , and
so R is simple. �

By help of Theorem 1.6, we have the following remark.

Remark 1.7. Let M = Matn(R) over a simple ring R. Then:
(1) M is IMIP;
(2) 0 = N∗(M) ( N(M), comparing with the property that N∗(A) = N(A)

for any IFP ring A;
(3) M is semiprime but not reduced, comparing with the fact that a ring is

reduced if and only if it semiprime IFP.
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The following example shows that Un(R) cannot be IMIP for any ring R
and n ≥ 2.

Example 1.8. Consider a ring R = Un(R) (n ≥ 2) over any ring R. Note that
any maximal ideal of Un(R) is one of the form










M R · · · R
0 R · · · R
...

...
. . .

...
0 0 · · · R











,











R R · · · R
0 M · · · R
...

...
. . .

...
0 0 · · · R











, . . . , or











R R · · · R
0 R · · · R
...

...
. . .

...
0 0 · · · M











where M denotes any maximal ideal of R. For E11, E22 ∈ Un(R), we have
E11E22 = 0. But any maximal ideal of Un(R) contains E12 and E11E12E22 =
E12 6= 0. This shows that Un(R) is not IMIP.

Example 1.8 says that the class of IMIP rings is not closed under subrings,
noting that Matn(R) over any simple ring R for n ≥ 2 is an IMIP ring by
Theorem 1.6.

Proposition 1.9. If R is an IMIP ring, then eRe is IMIP for all 0 6= e2 =
e ∈ R.

Proof. Let R be an IMIP ring and 0 6= e2 = e ∈ R. Suppose ab = 0 for
a, b ∈ eRe. Then ae = a and eb = b. Since R is IMIP, aMb = 0 for some
maximal ideal M of R. Note aMb = aeMeb. If eMe = eRe, then aNb = 0
for all maximal ideals N of eRe. So assume eMe ( eRe. Since eMe ⊆
(eRe)M(eRe) = eRe(RMR)eRe and eRe(RMR)eRe ⊆ eMe, we have

eMe = eRe(RMR)eRe.

We next show that eMe is a maximal ideal of eRe. One can find the proof by
help of [8, Theorem 3], but we here write another one. Assume that eMe ( N1

for some ideal N1 of eRe. Then

N1 = eReN1eRe = eRN1Re,

since eN1e = N1. If RN1R = RMR, then

eMe = eRe(RMR)eRe = eRe(RN1R)eRe = eRN1Re = eN1e = N1,

a contradiction. This forces M = RMR ( RN1R = R since M is maximal in
R. It then follows that

N1 = eReN1eRe = eRN1Re = eRe.

Thus eMe is a maximal ideal of eRe. Moreover 0 = aMb = a(eMe)b since
a = ae and b = eb, proving that eRe is IMIP. �

The converse of Proposition 1.9 does not hold in general. Recall the non-
IMIP ring R = U2(Z) in Example 1.8. For an idempotent e = E11 ∈ R,
eRe ∼= Z is IMIP clearly.
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Following [6], a ring R is called (von Neumann) regular if for each a ∈ R
there exists b ∈ R such that a = aba. For a regular ring R, R is reduced if and
only if R is IFP if and only if R is Abelian by help of [6, Theorem 3.2].

Considering Proposition 1.3(1),(2), one may conjecture that regular IMIP
rings are reduced. However we note that Mat2(Z2) is regular IMIP, which not
reduced.

A ring R is called directly finite if ab = 1 implies ba = 1 for a, b ∈ R. Clearly
Abelian rings (e.g., IFP rings) are directly finite. So one may conjecture that
IMIP rings are directly finite. However there exists a simple ring that is not
directly finite by [7, Theorem 1.3].

2. Properties of IMIP rings related to ring extensions

In this section we examine the IMIP property of several ring extensions.
Given a ring R and an (R,R)-bimodule M , the trivial extension of R by

M is the ring T (R,M) = R ⊕ M with the usual addition and the following
multiplication: (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This is isomorphic to
the ring of all matrices ( r m

0 r ), where r ∈ R and m ∈ M and the usual matrix
operations are used.

Notice that if R is a reduced ring, then T (R,R) is IMIP by help of [14,
Proposition 1.6]. But the following example illuminates that the trivial exten-
sion of an IMIP ring need not be so.

Example 2.1. Let R = Mat2(Z2). Then R is IMIP by Theorem 1.6. Consider
the trivial extension T (R,R), then the only maximal ideal of T (R,R) is

M =

(

0 R
0 0

)

,

since R is simple. Take

A =

(

a 0
0 a

)

∈ T (R,R),

for a = ( 1 1
1 1 ) ∈ R. Then A2 = 0, since a2 = 0. For

α =

(

0 m1

0 0

)

∈ M where m1 =

(

0 1
0 0

)

∈ R,

we have

AαA =

(

0 aαa
0 0

)

=

(

0 a
0 0

)

=









(

0 0
0 0

) (

1 1
1 1

)

(

0 0
0 0

) (

0 0
0 0

)









6= 0,

entailing that AMA 6= 0 and therefore T (R,R) is not IMIP.

For a reduced ring R and f(x), g(x) ∈ R[x], Armendariz [2, Lemma 1] proved
that

ab = 0 for all a ∈ Cf(x), b ∈ Cg(x) whenever f(x)g(x) = 0.
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Chhawchharia and Rege [4] called a ring Armendariz if it satisfies this property.
So reduced rings are clearly Armendariz. This fact will be used freely in this
note. Armendariz rings are Abelian by the proof of [1, Theorem 6] (or [13,
Lemma 7]). The concepts of Armendariz and IFP are independent of each
other by [4, Example 3.2] and [9, Example 14].

Let R be a ring and n ≥ 2, define

Dn(R) =









































a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a















∈ Un(R) | a, aij ∈ R



























.

Note that D2(R) = T (R,R).
Now we provide some useful properties which are equivalent to the IMIP

ring property, via the structure of D3(R).

Proposition 2.2. For a ring R, the following conditions are equivalent:
(1) R is a reduced ring;
(2) D3(R) is Armendariz;
(3) D3(R) is IFP;
(4) D3(R) is IMIP.

Proof. The equivalence of the conditions (1), (2) and (3) are proved by [11,
Proposition 2.8] and (3)⇒ (4) is obvious.

(4)⇒ (1): Let D3(R) be IMIP and assume on the contrary that there is a
nonzero a ∈ R with a2 = 0. We apply the computation in [11, Proposition 2.8].
Take

A =





a a −1
0 a −1
0 0 a



 , B =





a 0 a
0 a 1
0 0 a



 ∈ D3(R).

Then AB = 0 but every maximal ideal of D3(R) contains a nonzero matrix




0 1− a 0
0 0 0
0 0 0



 .

So we obtain




a a −1
0 a −1
0 0 a









0 1− a 0
0 0 0
0 0 0









a 0 a
0 a 1
0 0 a



 =





0 0 a
0 0 0
0 0 0



 6= 0.

This induces a contradiction to D3(R) being IMIP. Thus R is reduced. �

Based on Proposition 2.2, we may ask whether Dn(R) is also IMIP for n ≥ 4
when R is a reduced ring. However the following erases the possibility.
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Proposition 2.3. For a ring R, we have the following results.

(1) Dn(R) is not IMIP for any ring R when n ≥ 4.
(2) If D2(R) is IMIP, then R is IFP.

Proof. (1) Let R be any ring and n ≥ 4. Then every maximal ideal of Dn(R)
must contains E23. So we have E12E23E34 6= 0. But E12E34 = 0 in Dn(R),
hence Dn(R) is not IMIP for n ≥ 4.

(2) Note that any maximal ideal of D2(R) is of the form
{(

a r
0 a

)

| a ∈ M and r ∈ R

}

,

where M denotes a maximal ideal of R. Suppose that D2(R) is IMIP and let
ab = 0 for a, b ∈ R. Then

(

a 0
0 a

)(

b 0
0 b

)

= 0

in D2(R). We use X to denote {(m r
0 m ) | m ∈ M, r ∈ R}. Since D2(R) is IMIP,

for any maximal ideal M of R we have
(

a 0
0 a

)

X

(

b 0
0 b

)

= 0.

This implies aRb = 0, showing that R is IFP. �

The condition “R is IFP” in Proposition 2.3(2) cannot be replaced by the
condition “R is reduced” by the following example.

Example 2.4. Let R = Z4. Then R is not reduced (but IFP) with the only
maximal M = {0, 2}. Take any two nonzero elements

A =

(

a b
0 a

)

and B =

(

c d
0 c

)

∈ D2(R)

with AB = 0. Then AB is one of the following
(

0 2
0 0

)(

2 d
0 2

)

,

(

2 b
0 2

)(

0 2
0 0

)

,

(

2 0
0 2

)(

2 0
0 2

)

or

(

2 2
0 2

)(

2 2
0 2

)

for any b, d ∈ R. We use X to denote {(m r
0 m ) | m ∈ M, r ∈ R}. For the only

maximal ideal X of D2(R), we have AXB = 0, since 4M = 0. This shows that
D2(R) is IMIP but R is not reduced.

The converse of Proposition 2.3(2) need not hold by next example.

Example 2.5. We adopt the ring R and the argument in [9, Example 2]. Let

A = Z2〈a0, a1, a2, b0, b1, b2, c〉

be the free algebra generated by noncommuting indeterminates a0, a1, a2, b0,
b1, b2, c over Z2. Next let I be the ideal of A generated by

a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,
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(a0+a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2), and r1r2r3r4,

where the constant terms of r, r1, r2, r3, r4 ∈ A are zero. Now set R = A/I.
Then R is an IFP ring by the argument in [9, Example 2].

We identity a0, a1, a2, b0, b1, b2, c with their images in R for simplicity. Con-
sider the extension ring D2(R) of R. Let

A =

(

a0 a1
0 a0

)

and B =

(

b0 b1
0 b0

)

∈ D2(R).

Then AB = 0, but every maximal ideal of D2(R) contains ( r 0
0 r ) where 0 6= r ∈

R and so

A

(

a1 0
0 a1

)

B =

(

0 a0a1b1 + a1a1b0
0 0

)

6= 0,

since a0a1b1 + a1a1b0 6= 0 by the construction of I. This implies that D2(R) is
not IMIP.

The following example shows that the class of IMIP rings is not closed under
homomorphic images.

Example 2.6. Consider the ring R = D3(Z). Then R is IMIP by Proposition
2.3 since Z is reduced. Let I = D3(2

2Z). Then I is an ideal of R such that
R/I ∼= D3(Z4). But D3(Z4) cannot be IMIP by Proposition 2.3 because Z4 is
not reduced.

It is natural to conjecture that R is an IMIP ring if for any nonzero proper
ideal I of R, R/I and I are IMIP, where I is considered as an IMIP ring
without identity. However we have a negative answer to this question by the
next example.

Example 2.7. Consider the non-IMIP ring R = U2(D) over a division ring D,
as in Example 1.8. The only nonzero proper ideals of R are

I1 =

(

D D
0 0

)

, I2 =

(

0 D
0 D

)

and I3 =

(

0 D
0 0

)

,

and they are IFP by [9, Example 5] and so IMIP. Notice that R/I1 and R/I2
are isomorphic to D and R/I3 = {( a 0

0 c ) + I3 | a, c ∈ D} is a reduced ring.
Therefore each R/Ii (for i = 1, 2, 3) is IMIP.

Proposition 2.8. If a ring R has a maximal ideal which is reduced as a subring

of R, then R is IMIP.

Proof. We apply the proof of [9, Theorem 6]. Assume that M is a maximal
ideal of R which is reduced as a subring of R. Let ab = 0 for a, b ∈ R.
Then (bMa)2 = 0 and bMa ⊆ M . This yields bMa = 0 since M is reduced.
Accordingly, ((aMb)M)2 = aM(bMa)MbM = 0 and so aMbM = 0 since M
is reduced. This yields (aMb)2 ⊆ aMbM = 0. But aMb ⊆ M , so we get
aMb = 0 since M is reduced. Thus R is IMIP. �
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The condition “a maximal ideal which is reduced” in Proposition 2.8 cannot
be dropped by Example 2.7. In fact, I1 and I2 are all maximal ideals but not
reduced clearly.

It is natural to ask whether the class of IMIP rings is closed direct sums.
But the answer is negative by next example.

Example 2.9. We take the IMIP ring R = Mat2(Z2) as in Example 2.1.
Consider R⊕R. The only maximal ideals are R⊕ {0} and {0} ⊕R. Let

A =

(

1 1
1 1

)

∈ R⊕R.

Note that A2 = 0. Then (A,A)(A,A) = 0 in R⊕R. For

α =

(

1 0
0 0

)

∈ R,

(α, 0) ∈ R ⊕ {0}, and (0, α) ∈ {0} ⊕ R. Then (A,A)(α, 0)(A,A) = (A, 0)
and (A,A)(0, α)(A,A) = (0, A), showing that (A,A)(R ⊕ {0})(A,A) 6= 0 and
(A,A)({0} ⊕R)(A,A) 6= 0, respectively. Thus R⊕R is not IMIP.

By the similar argument to above, it can be shown that a direct sum R =
⊕

γ∈ΓRγ of IMIP rings Rγ for an indexed set Γ is not IMIP.

Proposition 2.10. If R[x] over a ring R is an IMIP ring, then so is R.

Proof. Suppose that R[x] is IMIP and let M be a maximal ideal of R[x]. Set

M0 = {a ∈ R | a is the constant term of f(x) when f(x) ∈ M}.

Since M is a maximal ideal of R[x], we have either M0 is a maximal ideal of
R or M0 = R. Now, let ab = 0 for a, b ∈ R. By assumption, aMb = 0 and so
either aM0b = 0 or aRb = 0. Each case of them entails that R is IMIP. �

But, the following example illuminates that the IMIP ring property does not
go up to polynomial rings and power series rings.

Example 2.11. (1) Recall the IFP ring R in Example 2.5 and apply the
argument in [9, Example 2]. Let M be the set of all polynomials in R with
zero constant term. Then M is the unique maximal ideal of R since M4 = 0
and any r ∈ R\M is a unit. Note R/M ∼= Z2.

If we take

f(x) = a0 + a1x+ a2x
2 and g(x) = b0 + b1x+ b2x

2

in R[x], then f(x)g(x) = 0 as we see in the computation in Example 2.5. Since
M [x] is an ideal of R[x] with M [x]4 = 0, every maximal ideal P of R[x] contains
M [x], especially c. Recall f(x)cg(x) 6= 0. This implies f(x)Pg(x) 6= 0, showing
that R[x] is not IMIP.

(2) Consider the power series ring R[[x]] over an IMIP ring R (1). Observe
that every maximal ideal N of R[[x]] is of the form M+xR[[x]] with a maximal
ideal M of R. By (1), there exist f(x), g(x) ∈ R[[x]] such that f(x)g(x) = 0
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and f(x)cg(x) 6= 0. Then 0 6= f(x)cxg(x) ∈ f(x)Ng(x), concluding that R[[x]]
is not IMIP.

It is well-known that the IFP ring which is Armendariz can go up to poly-
nomials. We do not know an example of an Armendariz IMIP ring R such that
R[x] is not IMIP.

Question. If R is IMIP and Armendariz, then is R[x] IMIP?

The concepts of an Armendariz ring and an IMIP ring do not imply each
other by the following.

Example 2.12. (1) For a simple ring A, R = Matn(A) (n ≥ 2) is IMIP by
Theorem 1.6, but R is not Armendariz by [4, Remark 3.1] (or, see [9, Example
2]).

(2) The ring R = U3(A) over a reduced ring A is Armendariz by [13, Propo-
sition 2], but not IMIP by Example 1.8.

Recall that the Abelian ring is also a generalization of IFP rings. But the
concepts of IMIP and Abelian are independent on each other by the following
example and Remark 1.7(1).

Example 2.13. We use the subring

R =

{(

a c
0 b

)

| a− b ≡ c ≡ 0 (mod 2)

}

of Mat2(Z) in [13, Example 13]. Then R is Abelian by the argument in [13,
Example 13]. Let M be any maximal ideal of R. Then M must contain a
matrix

(

α β
0 γ

)

with β 6= 0.

So we have
(

2 0
0 0

)(

0 β
0 0

)(

0 0
0 2

)

=

(

0 4β
0 0

)

6= 0.

This entails
(

2 0
0 0

)

M

(

0 0
0 2

)

6= 0, but

(

2 0
0 0

)(

0 0
0 2

)

= 0.

Thus R is not IMIP.
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