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OPTIMAL CONTROL PROBLEMS FOR PARABOLIC

HEMIVARIATIONAL INEQUALITIES WITH BOUNDARY

CONDITIONS

Jin-Mun Jeong, Eun-Young Ju, and Hyun-Min Kim

Abstract. In this paper, we study optimal control problems for par-
abolic hemivariational inequalities of dynamic elasticity and investigate
the continuity of the solution mapping from the given initial value and
control data to trajectories. We show the existence of an optimal control
which minimizes the quadratic cost function and establish the necessary
conditions of optimality of an optimal control for various observation
cases.

1. Introduction

Let Y be a Hilbert space and let Uad ⊂ L2(0, T ;Y ) (T > 0) be an admissible
control set.

In this paper we study the optimal control problems finding a control û ∈ Uad

for a given cost function J governed by a parabolic hemivariational inequality
of the form such that
(1.1)




infu∈Uad
J(u) = J(û) satisfing

∂
∂tx(y, t)+∆x(y, t)−divC[ε(x(y, t))]+Ξ(y, t)=Bu(t)+f(t) in Ω× (0,∞),

x(y, t) = 0 on Γ1 × (0,∞),

C[ε(x(y, t))]ν = −(β · ν)x(y, t) on Γ0 × (0,∞),

Ξ(y, t) ∈ ϕ(x(y, t)) a.e. (y, t) ∈ Ω× (0,∞),

x(y, 0) = x0(y) in Ω,

where Ω is a bounded domain in R
N with sufficiently smooth boundary Γ and

f is a forcing function. Let x0 ∈ R
N , β(x) = x−x0, R = maxx∈Ω |x−x0|. The
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boundary Γ is composed of two pieces Γ0 and Γ1, which are nonempty sets and
defined by

(1.2) Γ0 := {x ∈ Γ : β(x) · ν ≥ α > 0} and Γ1 := {x ∈ Γ : β(x) · ν ≤ 0},

where ν is the unit outward normal vector to Γ. Here u̇ = ∂u
∂t , u = (u1, . . . , uN)T

is the displacement, ε(u) = 1
2{∇u+ (∇u)T } = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
is the strain ten-

sor, ϕ(u) = (ϕ1(u1), . . . , ϕN (uN ))T , ϕi is a multi-valued mapping by filling in
jumps of a locally bounded function bi, i = 1, . . . , N . A continuous map C
from the space S of N ×N symmetric matrices into itself is defined by

C[ε] = a(tr ε)I + bε for ε ∈ S,

where I is the identity of S, tr ε denotes the trace of ε and a > 0, b > 0. For
example, in the case N = 2, C[ε] = E

d(1−µ2) [µ(tr ε)I + (1 − µ)ε], where E > 0

is Young’s modulus, 0 < µ < 1/2 is Poisson’s ratio and d is the density of the
plate.

Let A be a continuous linear operator satisfying G̊arding’s inequality. Name-
ly, we formulated the problem (1.1) as

(1.3) ẋ+Ax− divC[ε(x)] + Ξ = Bu+ f in Ω× (0,∞).

The background of these variational problems are physics, especially in solid
mechanics, where nonconvex and multi-valued constitutive laws lead to dif-
ferential inclusions. We refer to [19, 20] to see the applications of differential
inclusions.

The existence of global weak solutions for a class of hemivariational inequal-
ities has been studied by many authors, for example, parabolic type problems
in [14, 15, 19, 20], and hyperbolic types in [16, 22, 23]. Rauch [17] and Miet-
tinen and Panagiotopoulos [14, 15] proved the existence of weak solutions for
elliptic one. Quite recently, Park et al. [21] proved the regularity for solutions
of parabolic hemivariational inequalities of dynamic elasticity in the strong
sense and investigate the continuity of the solution mapping from initial data
and forcing term to trajectories. For the optimal control problem of systems
governed by variational inequalities, see [4, 5, 9, 10]. We refer to [11, 18] to
see the applications of nonlinear variational inequalities. First order necessary
conditions for state constraint optimal control problems governed by semilinear
elliptic problems have been obtained by Bonnans and Tida [6] using methods
of convex analysis (see also [12]).

In this paper, based on the regularity for solutions of the equation (1.1),
we study optimal control problems for parabolic hemivariational inequalities of
dynamic elasticity in the strong sense and investigate the Gâteaux differential
of the solution mapping from the given initial value and control data to tra-
jectories due to the variational approach of Lions [12]. We show existence of
optimal controls which minimizes the quadratic cost function and establish the
necessary conditions of an optimal control for various observation cases.



OPTIMAL CONTROL PROBLEMS FOR HEMIVARIATIONAL INEQUALITIES 569

Since we are considering nonlinear hemivariational inequality, it is not easy
to obtain the optimality conditions of optimal controls. To avoid this diffi-
culty we introduce the smoothing system corresponding to (1.1) by taking the
regularization of the nonlinear term Ξ(·, ·) (see (HIE-1) in Section 3).

The paper is organized as follows. In Section 2 we study the regularity and
a variational of constant formula for solutions of parabolic hemivariational in-
equality. The existence and regularity for the nondegenerate nonlinear systems
has been developed as seen in Theorem 4.1 of [1] or Theorem 2.6 of [3], and
the references therein. Thereafter, in Section 3, we prove the existence and the
uniqueness of optimal control for the problem (1.1). In Section 4 we show the
optimal control which minimizes the quadratic cost function and establish the
necessary conditions of optimality of an optimal control for various observation
cases. Here we employ the method of transposition due to Lions and Magenes
[13], which is an important and challenging problem to extend the theory to
practical nonlinear partial differential equations.

2. Variational inequalities

Let V and H be complex Hilbert spaces forming Gelfand triple V ⊂ H ⊂ V ∗

with pivot space H . For the sake of simplicity, we may consider

||u||∗ ≤ |u| ≤ ||u||, u ∈ V,

where || · ||∗ is the norm of the element of V ∗. If an operator A is bounded
linear from V to V ∗ and generates an analytic semigroup, then it is easily seen
that

H = {x ∈ V ∗ :

∫ T

0

||AetAx||2∗dt <∞}

for the time T > 0. Therefore, in terms of the intermediate theory we can see
that

(V, V ∗)1/2,2 = H.

We also assume that there exists a constant C1 such that

(2.1) ||u|| ≤ C1||u||1/2D(A)|u|1/2

for every u ∈ D(A0), where

||u||D(A) = (|Au|2 + |u|2)1/2

is the graph norm of D(A). Thus, in what follows we will write V = (D(A),
H)1/2,2 as a matter of convenience. Let a(·, ·) be a bounded sesquilinear form
defined in V × V and satisfying G̊arding’s inequality

(2.2) Re a(u, u) ≥ c0||u||2, c0 > 0.

Let A be the operator associated with the sesquilinear form a(·, ·):
(Au, v) = a(u, v), u, v ∈ V.
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Then A is a bounded linear operator from V to V ∗, and A generates an analytic
semigroup in both of H and V ∗. It is also known that if a(·, ·) is a symmetric
quadratic form satisfying (2.2) then A is positive definite and self-adjoint and
D(A1/2) = V .

Let φ : V → (−∞,+∞] be a lower semicontinuous, proper convex function.
Then the subdifferential operator ∂φ : V → V ∗ of φ is defined by

∂φ(x) = {x∗ ∈ V ∗ : φ(x) ≤ φ(y) + (x∗, x− y), y ∈ V }.
First, let us concern with the following perturbation of subdifferential operator;

(NE)

{
x

′

(t) +Ax(t) + ∂φ(x(t)) ∋ Bu(t), 0 < t ≤ T,

x(0) = x0,

For every ǫ > 0, define

φǫ(x) = inf{||x− Jǫx||2∗/2ǫ+ φ(Jǫx) : x ∈ V },
where Jǫ = (I + ǫ∂φ)−1. If B = ∂φ, then the function ∂φǫ is Fréchet differen-
tiable on V and its Frećhet differential ∂φǫ = Bǫ is Lipschitz continuous on H
with Lipschitz constant ǫ−1 where Bǫ = ǫ−1(I−(I+ǫB)−1) as is seen in Corol-
lary 2.2 in Chapter II of [3]. It is also well known results that limǫ→0 φǫ = φ
and limǫ→0 ∂φǫ(x) = (∂φ)0(x) for every x ∈ D(∂φ) where (∂φ)0 : V → V ∗ is
the minimum element of ∂φ. Now, we introduce the smoothing system corre-
sponding to (NE) as follows.

{
x

′

(t) +Ax(t) + ∂φǫ(x(t)) = Bu(t), 0 < t ≤ T,

x(0) = x0.
(SE)

Using the regularity for the abstract linear parabolic equation we have the
following result on the equation (NE).

Proposition 2.1. 1) Let u ∈ L2(0, T ;U) and x0 ∈ V satisfying that φ(x0) <
∞. Then the equation (NE) has a unique solution

x ∈ L2(0, T ;V ) ∩W 1,2(0, T : V ∗) ⊂ C([0, T ];H),

which satisfies

x
′

(t) = Bu(t)−Ax(t) − ∂φ0(x(t))

and

(2.3) ||x||L2∩W 1,2 ≤ C2(1 + ||x0||+ ||u||L2(0,T ;U)),

where C2 is a constant and L2 ∩W 1,2 = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗).
2) Let a(·, ·) be a symmetric quadratic form satisfying (2.2) and the following

hypothesis hold:
(A) There exists h ∈ H such that for every ǫ > 0 and any ∈ D(φ)

Jǫ(y + ǫh) ∈ D(φ) and φ(Jǫ(y + ǫh)) ≤ φ(y).
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Then for k ∈ L2(0, T ;H) and x0 ∈ D(φ) ∩ V the equation (NE) has a unique

solution

x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ∩C([0, T ];H),

which satisfies

(2.4) ||x||L2∩W 1,2∩C ≤ C2(1 + ||x0||+ ||u||L2(0,T ;U)).

If V is compactly embedded in H , the following embedding

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ L2(0, T ;H))

is compact in view of Theorem 2 of Aubin [1]. Hence, the mapping u 7→ x is
compact from L2(0, T ;U) to L2(0, T ;H).

Now we give the assumption on the nonlinear terms as follows.
(F) Let f be a nonlinear single valued mapping from V into H. We assume

that

|f(t, x1)− f(t, x2)| ≤ L||x1 − x2||
for very x1, x2 ∈ V .

Now, we introduce smoothing system corresponding to (NCE) as follows.
{

dx(t)
dt +Ax(t) + ∂φǫ(x(t)) = f(t, x(t)) +Bu(t), 0 < t ≤ T,

x(0) = x0.
(SCE)

Since −A generates a semigroup S(t) on H , the mild solution of (SCE) can be
represented by

(2.5) xǫ(t) = S(t)x0 +

∫ t

0

S(t− s){f(s, xǫ(s)) +Bu(s)− ∂φǫ(xǫ(s))}ds.

We establish the following result on the solvability of (NCE) as is seen in
Theorem 3.7 of [21].

Proposition 2.2. 1) Let x0 ∈ V satisfying that φ(x0) < ∞, u ∈ L2(0, T ;U)
and the assumption (F) be satisfied. Then the equation (NCE) has a unique

solution

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ) ∩ C([0, T ];H),

which satisfies

x
′

(t) = f(t, x(t)) +Bu(t)−Ax(t)− ∂φ0(x(t))

and there exists a constant C3 depending on T such that

(2.6) ||x||L2∩W 1,2 ≤ C3(1 + ||x0||+ ||u||L2(0,T ;U)).

2) Let a(·, ·) be a symmetric quadratic form satisfying (2.2) and let us assume

the hypotheses (A), (F). Then the equation (NCE) has a unique solution

x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ∩C([0, T ];H),

which satisfies

(2.7) ||x||L2∩W 1,2∩C ≤ C3(1 + ||x0||+ ||u||L2(0,T ;U)).
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Theorem 2.3. Let x0 ∈ V , u ∈ L2(0, T ;U) and the hypotheses in 2) of Propo-
sition 2.2 be satisfied. Then the solution x of the equation (SCE) belongs to

L2(0, T ;D(A)) ∩W 1,2(0, T ;H), and the mapping

V × L2(0, T ;U) ∋ (x0, u) 7→ x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H)

is continuous.

Proof. Let (x0i, ui) ∈ F × L2(0, T ;U), and xi be the solution of (SNE) with
(x0i, ui) in place of (x0, u) for i = 1, 2. Then in view of (2.7), we have

||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H)

(2.8)

≤ C3{||x01 − x02||+ (||∂φǫ(x1)− ∂φǫ(x2)||+ ||f(·, x1)− f(·, x2)||)L2(0,T ;H)

+ ||u1 − u2||)L2(0,T ;U)}
≤ C3{||x01 − x02||+ (ǫ−1 + L)||x1 − x2||L2(0,T :V ) + ||u1 − u2||L2(0,T ;U)}.

Noting that

x1(t)− x2(t) = x01 − x02 +

∫ t

0

(ẋ1(s)− ẋ2(s))ds,

we get

||x1 − x2||L2(0,T ;H) ≤
√
T ||x01 − x02||+

T√
2
||x1 − x2||W 1,2(0,T ;H).

Hence from (2.1) we get

||x1 − x2||L2(0,T ;V )(2.9)

≤ C1||x1 − x2||1/2L2(0,T ;D(A))||x1 − x2||1/2L2(0,T ;H)

≤ C1||x1 − x2||1/2L2(0,T ;D(A0))

× {T 1/4||x01 − x02||1/2 + (
T√
2
)1/2||x1 − x2||1/2W 1,2(0,T ;H)}

≤ C1T
1/4||x01 − x02||1/2||x1 − x2||1/2L2(0,T ;D(A))

+ C1(
T√
2
)1/2||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H)

≤ 2−7/4C1||x01 − x02||+ 2C1(
T√
2
)1/2||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H).

Combining (2.8) and (2.9) we obtain

||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H)

(2.10)

≤ C3{||x01 − x02||+ (ǫ−1 + L)(2−7/4C1||x01 − x02||

+ 2C1(
T√
2
)1/2||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H)) + ||u1 − u2||L2(0,T ;U)}.
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Suppose that (x0n, un) → (x0, u) in V×L2(0, T ;H), and let xn and x be the
solutions (SCE) with (x0n, un) and (x0, u) respectively. Let 0 < T1 ≤ T be
such that

(ǫ−1 + L)C1C3(2T1)
1/2 < 1.

Then by virtue of (2.10) with T replaced by T1 we see that xn → x in
L2(0, T1;D(A)) ∩ W 1,2(0, T1;H) ⊂ C([0, T1];V ). This implies that xn(T1)
7→ x(T1) in V . Hence the same argument shows that xn → x in

L2(T1,min{2T1, T };D(A)) ∩W 1,2(T1,min{2T1, T };H).

Repeating this process we conclude that xn → x in

L2(0, T ;D(A)) ∩W 1,2(0, T ;H). �

3. Preliminaries and hemivariational inequalities

We denote ξ · ζ =
∑N

i=1 ξiζi for ξ = (ξ1, . . . , ξN ), ζ = (ζ1, . . . , ζN ) ∈ R
N and

ε · ε̃ = ∑N
i,j=1 εij ε̃ij for ε, ε̃ ∈ S. Throughout this paper, we consider

V = {u ∈ (H1(Ω))N : u = 0 on Γ1}, H = (L2(Ω))N ,

(u, v) =

∫

Ω

u(x) · v(x)dx, (u, v)Γ0
=

∫

Γ0

u(x) · v(x)dΓ.

We denote V ∗ the dual space of V , (·, ·) the dual pairing between V and V ∗.
The norms on V , H and V ∗ will be denoted by ||·||, |·| and ||·||∗, respectively.

For the sake of simplicity, we may consider

||u||∗ ≤ |u| ≤ ||u||, u ∈ V.

We denote || · ||(L2(Γ0))N by || · ||Γ0
. Let A be the operator associated with a

sesquilinear form a(u, v) which is defined G̊arding’s inequality

Re a(u, u) ≥ ω1||u||2 − ω2|u|2, ω1 > 0, ω2 ≥ 0, for u ∈ V,

that is,

(Au, v) = a(u, v), u, v ∈ V.

Then A is a symmetric bounded linear operator from V into V ∗ which satisfies

(Au, u) ≥ ω1||u||2 − ω2|u|2(1)

and its realization in H which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}
is also denoted by A. Here, we note that D(A) is dense in V . Hence, it is also
dense in H . We endow the domain D(A) of A with graph norm, that is, for
u ∈ D(A), we define ||u||D(A) = |u|+ |Au|. So, for the brevity, we may regard
that |u| ≤ ||u|| ≤ ||u||D(A) for all u ∈ V . It is known that −A generates an
analytic semigroup S(t)(t ≥ 0) in both H and V ∗.

From the following inequalities

ω1||u||2 ≤ Re a(u, u) + ω2|u|2 ≤ C|Au| |u|+ ω2|u|2
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= (C|Au|+ ω2|u|)|u| ≤ max{C, ω2}||u||D(A)|u|,
it follows that there exists a constant C0 > 0 such that

||u|| ≤ C0||u||1/2D(A)|u|
1/2.(2)

So, we may regard as V = (D(A), H)1/2,2 where (D(A), H)1/2,2 is the real
interpolation space between D(A) and H (see [2, 7]).

If X is a Banach space and 1 < p < ∞, Lp(0, T ;X) is the collection of
all strongly measurable functions from (0, T ) into X the p-th powers whose
norms are integrable and Wm,p(0, T ;X) is the set of all functions f whose
derivatives Dαf up to degree m in the distribution sense belong to Lp(0, T ;X).
Cm([0, T ];X) is the set of allm-times continuously differentiable functions from
[0, T ] into X . Let X and Y be complex Banach spaces. Denote by L(X,Y )
the set of all bounded linear operators from X into Y . Let L(X) = L(X,X).

From now on, we begin to introduce the regularity of solutions for the fol-
lowing parabolic hemivariational inequality of dynamic elasticity in the strong
sense:

(HIE)






x
′

(t) +Ax(t)− divC[ε(x(t))] + Ξ(y, t) = Bu(t) + f(t), t ≥ 0,

x = 0 on (y, t) ∈ Γ1 × (0,∞),

C[ε(x(y, t))]ν = −(β · ν)x(y, t) on Γ0 × (0,∞),

Ξ(y, t) ∈ ϕ(x(y, t)) a.e. (y, t) ∈ Ω× (0,∞),

x(0) = x0.

A continuous map C from the space S of N × N symmetric matrices into
itself is defined by

C[ε] = a(tr ε)I + bε, for a > 0, b > 0, ε ∈ S.

It is easily known that

−(divC[ε(w)], v) = −(C[ε(w)]ν, v)Γ0
+ (C[ε(w)], ε(v))(2.3)

= ((β · ν)w, v)Γ0
+ (C[ε(w)], ε(v)), v, w ∈ V,

C[ε(w1)]− C[ε(w2)] = C[ε(w1 − w2)], w1, w2 ∈ V.(2.4)

Note that the map C is linear and symmetric and it can be easily verified that
the tensor C satisfies the condition

(2.5) λ0|ε|2 ≤ C[ε] · ε ≤ λ1|ε|2, ε ∈ S for some λ0, λ1 > 0.

Let λ be the smallest positive constant such that

(2.6) ||v||2 ≤ λ||∇v||2 for all v ∈ V.

Simple calculations and Korn’s inequality yield that

(2.7) λ2|∇u|2 ≤ |ε(u)|2 ≤ λ3|∇u|2,
and hence |ε(u)| is equivalent to the (H1(Ω))N norm on V.

Now, we formulate the following assumptions:
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(Hb) Let bi(i = 1, . . . , N) : R → R be a locally bounded function verifying

|bi(s)| ≤ µi|s| for s ∈ R,

where µi > 0. We denote

µ̃ = max{µ1, . . . , µN}.

The multi-valued function ϕi : R → 2R is obtained by filling in jumps of a
function bi : R → R by means of the functions bi

ǫ, bi
ǫ
, bi, bi : R → R as follows.

bi
ǫ(s) = ess inf |τ−s|≤ǫ bi(τ), bi

ǫ
(s) = ess sup|τ−s|≤ǫ bi(τ),

bi(s) = lim
ǫ→0+

bi
ǫ(s), bi(s) = lim

ǫ→0+
bi

ǫ
(s),

ϕi(s) = [bi(s), bi(s)].

We denote b(ξ) := (b1(ξ1), . . . , bN(ξN )), ϕ(ξ) := (ϕ1(ξ1), . . . , ϕN (ξN )) for ξ̃ =
(ξ1, . . . , ξN ) ∈ R

N . We shall need a regularization of bi defined by

bni (s) = n

∫ ∞

−∞

bi(s− τ)ρ(nτ)dτ,

where ρ ∈ C∞
0 ((−1, 1)), ρ ≥ 0 and

∫ 1

−1 ρ(τ)dτ = 1. It is easy to show that bni
is continuous for all n ∈ N and bi

ǫ, bi
ǫ
, bi, bi, b

n
i satisfy the same condition (Hb)

with possibly different constants if bi satisfies (Hb). It is also known that bni (s)
is locally Lipschitz continuous in s, i.e., for any r > 0, there exists a number
Li(r) > 0 such that

(Hb−1) |bni (s1)− bni (s2)| ≤ Li(r)|s1 − s2|
holds for all s1, s2 ∈ R with |s1| < r, |s2| < r. We denote

L(r) = max{L1(r), . . . , LN (r)}.
Here, we remark that bn(s) is C∞with Fréchet derivative Dbn(s) such that
Dbn(s) ≤ L(r).

From now on, we establish the following results on the solvability of the
following equation.

(HIE-1)





x
′

(t) +Ax(t) − divC[ε(x(t))] = −bn(x(t)) +Bu(t) + f(t), t ≥ 0,

x = 0 on Γ1 × (0,∞),

C[ε(x(y, t))]ν = −(β · ν)x(y, t) on Γ0 × (0,∞),

x(0) = x0.

Referring to the result by Park et al. [21], the wellposedness of (HIE-1) can
be given as follows.

Proposition 3.1. Suppose that the assumptions stated above are satisfied.

Then the following properties hold:
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Let (x0, f) ∈ H×L2(0, T ;V ∗) and B ∈ L(Y, V ∗). Then there exists a unique

solution x of (1.1) belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

(2.8) ||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|x0|+ ||u||L2(0,T ;Y ) + ||f ||L2(0,T ;V ∗)),

where C1 is a constant depending on T .

Let â(u, v) be a bounded sesquilinear form defined in V × V by

â(u, v) = (Au, v)− (divC[ε(u)], v), u, v ∈ V.

Noting that by (2.3)

−(divC[ε(u)], u) = (C[ε(u)], ε(u)) + ((β · ν)u, u)Γ0
,

and by (2.5), (2.7) and (1.2),

λ0λ2||u||2 ≤ (C[ε(u)], ε(u)), α||u||2Γ0
≤ ((β · ν)u, u)Γ0

,

it follows that there exist ω̂1 > 0 and ω̂2 ≥ 0 such that

Re â(u, u) ≥ ω̂1||u||2 − ω̂2|u|2 for u ∈ V.

Let Â be the operator associated with this sesquilinear form:

(Âu, v) = â(u, v), u, v ∈ V.

Then Â is also a symmetric continuous linear operator from V into V ∗ which
satisfies

(Âu, u) ≥ ω̂1||u||2 − ω̂2|u|2.
So we know that −Â generates an analytic semigroup Ŝ(t)(t ≥ 0) in both H
and V ∗. Hence, by applying Proposition 2.1 to the regularity for the solution
of the equation:





x
′

(t) + Âx(t) = −bn(x(t)) +Bu(t) + f(t), t > 0,

x = 0 on Γ1 × (0,∞),

C[ε(x(y, t))]ν = −(β · ν)x(y, t) on Γ0 × (0,∞),

x(y, 0) = x0(y), y ∈ Ω,

in the space H , we can obtain a unique solution x belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying the norm estimate (2.8).
We set

F (x) =

∫ 1

0

−Dbn(rx)dr, x ∈ V.

Then, using the assumption (Hb-1), we see the following properties:

− bn(x) = F (x)x − bn(0),
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||F (x(t))||L(V,H) ≤ L, x ∈ C([0, T ];V ).

Therefore, the problem (HIE-1) can be rewritten as

x(t) = Ŝ(t)x0 +

∫ t

0

Ŝ(t− s)[F (x(s))x(s) +Bu(s)− bn(0) + f(s)]ds,

or, by perturbations of semigroup theory,

(2.9) x(t) = Q(t;F )x0 +

∫ t

0

Q(t− s;F )[Bu(s)− bn(0) + f(s)]ds,

where

Q(t− s;F )y = S(t− s)y +

∫ t

s

S(t− r)F (x(r))Q(r − s;F )ydr, 0 ≤ s ≤ t ≤ T.

Remark 3.2. 1) It is easily seen that

H = {x ∈ V ∗ :

∫ T

0

||AetAx||2∗dt <∞}

for the time T > 0. Therefore, in terms of the intermediate theory we can see
that

(V, V ∗)1/2,2 = H.

In terms of Proposition 2.1, we remark that if x0 ∈ V = (D(A), H)1/2,2,

f ∈ L2(0, T ;H) and B ∈ L(Y,H) for any T > 0, then the solution x of (HIE-1)
exists and is unique in

x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V ).

Furthermore, there exists a constant C1 depending on T such that

(2.10) ||x||L2∩W 1,2 ≤ C1(1 + ||x0||+ ||u||L2(0,T ;Y ) + ||f ||L2(0,T ;H)).

2) Let x be a solution of (HIE-1) and x ∈ Br = {v ∈ L2(0, T ;V ) : ||v|| ≤ r}.
Then the following inequality holds: for any 0 < t ≤ T ,

||x||2C([0,t];H)∩L2(0,t;V )∩L2(0,t;(L2(Γ0))N )

≤ c−1
1 (

1

2
|x0|2 + ||u||2L2(0,t;Y ) + ||f ||2L2(0,t;H)),

(2.11)

where c1 = min{1/2, α, ω1 + c0}e−(ω2+L(r)+1)t. In fact, we remark that from
(2.4) and (2.5), it follows that there is a constant c0 > 0 such that

(2.12) c0||x1(t)− x2(t)||2 ≤ (C[ε(x1(t))]− C[ε(x2(t))], ε(x1(t))− ε(x2(t))).

Multiplying x(t) on both sides of (HIE-1), we get

(x
′

(t), x(t)) + (Ax(t), x(t)) + (C[ε(x(t))], ε(x(t))) + ((β · ν)x(t), x(t))
+ (bn(x(t)), x(t)) = (Bu(t), x(t)) + (f(t), x(t)),

and integrating this over (0, t), by (2.1), (2.12) and (Hb-1), we have

1

2
|x(t)|2 + α

∫ t

0

||x(τ)||2Γ0
dτ + (ω1 + c0)

∫ t

0

||x(τ)||2dτ
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≤ 1

2
|x0|2 + (ω2 + L(r))

∫ t

0

|x(τ)|2dτ +
∫ t

0

{|Bu(τ) + f(τ)|2 + |x(τ)|2}dτ.

Applying Gronwall Lemma, we obtain (2.11).

The following results for the continuity of solution map in the sense of Propo-
sition 2.1 and Remark 2.1 follow immediately from Theorem 3.7 of [21].

Proposition 3.3. Let the assumption (Hb) be satisfied.

1) If (x0, u, f) ∈ V × L2(0, T ;Y ) × L2(0, T ;H) and B ∈ L(Y,H), then the

solution x of the equation (HIE) belongs to x ∈ L2(0, T ;D(A)) ∩ C([0, T ];V )
and the mapping

V × L2(0, T ;Y ) ∋ (x0, u) 7→ x ∈ L2(0, T ;D(A)) ∩ C([0, T ];V )

is continuous.

2) If (x0, u, f) ∈ H × L2(0, T ;Y ) × L2(0, T ;V ∗) and B ∈ L(Y, V ∗). Then

the solution x of the equation (HIE) belongs to x ∈ L2(0, T ;V ) ∩ C([0, T ];H)
and the mapping

H × L2(0, T ;Y ) ∋ (x0, u) 7→ x ∈ L2(0, T ;V ) ∩C([0, T ];H)

is continuous.

4. Optimal control problems

In this section we study the optimal control problems for quadratic cost func-
tion in framework of Lions [12]. In what follows we assume that the embedding
D(A) ⊂ V ⊂ H is compact.

Let Y be another Hilbert space, and B be an bounded linear operator from
Y into H , i.e.,

(3.1) B ∈ L(Y,H),

which is called a controller.
Let the solution spaces W and W1 of (1.1) of strong solutions are defined by

W = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H),

W1 = L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V ),

respectively, as stated in Proposition 2.1 and Remark 2.1. By virtue of Propo-
sition 2.1, we can define uniquely the solution map u 7→ x(u) of L2(0, T ;Y )
into W . We shall call the solution x(u) the state of the control system (1.1).

Let Y = L2(0, T ;Y ) be a Hilbert space of control variables. Choose a
bounded subset U of Y . Let us define an admissible control Uad as

Uad = {u ∈ Y : u is strongly measurable function satisfying

u(t) ∈ U for almost all t}.
Let M be a Hilbert space of observation variables. The observation of state

is assumed to be given by

(3.2) z(u) = Cx(u), C ∈ L(W1,M),
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where C is an operator called the observe.
Let zd ∈M . Suppose that there exists no admissible control which satisfies

Cx(u) = zd. The quadratic cost function associated with the control system
(1.1) is given by

(3.3) J(v) = ||Cx(v) − zd||2M + (Rv, v)Y for v ∈ Uad,

where zd ∈ M is a desire value of x(v) and R ∈ L(Y,Y) is symmetric and
positive, i.e.,

(3.4) (Rv, v)Y = (v,Rv)Y ≥ d||v||2Y
for some d > 0.

An element u ∈ Uad which attains minimum of J(v) over Uad is called an
optimal control for the cost function (3.3).

Remark 4.1. We consider the following two types of observation C of distribu-
tive and terminal values (see [9, 10]).

1) We take M = L2(Ω× (0, T ))× L2(Ω) and C ∈ L(W ,M) and observe

z(v) = Cx(v) = (x(v; ·), x(v, T )) ∈ L2(Ω× (0, T ))× L2(Ω);

2) We take M = L2(Ω× (0, T )) and C ∈ L(W ,M) and observe

z(v) = Cx(v) = x′(v; ·) ∈ L2(Ω× (0, T )).

The above observations are meaningful in view of the regularity of the equation
(1.1) by Proposition 2.1.

Theorem 4.2. Let the assumption (Hb) be satisfied.

1) Assume that (x0, f) ∈ H × L2(0, T ;V ∗) and B ∈ L(Y, V ∗). Then the

mapping u 7→ x(u) is compact from L2(0, T ;Y ) to L2(0, T ;H).
2) Assume that (x0, f) ∈ V × L2(0, T ;H) and B ∈ L(Y,H). Then the

mapping u 7→ x(u) is compact from L2(0, T ;Y ) to L2(0, T ;V ).

Proof. 1) We define the solution mapping S from L2(0, T ;Y ) to L2(0, T ;H) by

Su = x(u), u ∈ L2(0, T ;Y ).

In virtue of Proposition 2.1, we have

||Su||L2(0,T ;V )∩W 1,2(0,T ;V ∗) = ||x(u)|| ≤ C1{|x0|+||u||L2(0,T ;Y )+||f ||L2(0,T ;V ∗)}.
Hence if u is bounded in L2(0, T ;Y ), then so is x(u) in L2(0, T ;V )∩W 1,2(0, T ;
V ∗). Since V is compactly embedded in H by assumption, the embedding
L2(0, T ;V )∩W 1,2(0, T ;V ∗) ⊂ L2(0, T ;H) is also compact in view of Theorem
2 of Aubin [1]. Hence, the mapping u 7→ Su = x(u) is compact from L2(0, T ;Y )
to L2(0, T ;H).

2) If D(A) is compactly embedded in V by assumption, the embedding

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ L2(0, T ;V )

is compact. Hence, the proof of 2) is complete. �
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As indicated in Introduction we need to show the existence of an optimal
control and to give the characterizations of them. The existence of an optimal
control u for the cost function (3.3) can be stated by the following theorem.

Theorem 4.3. Let the assumption (Hb) be satisfied and x0 ∈ D(φ)∩V . Then

there exists at least one optimal control u for the control problem (1.1) associ-
ated with the cost function (3.2), i.e., there exists u ∈ Uad such that

(3.5) J(u) = inf
v∈Uad

J(v) := J.

Proof. Since Uad is non-empty and J is bounded from below, there is a sequence
{un} ⊂ Uad such that minimizing sequence for the problem (3.5), which satisfies

inf
v∈Uad

J(v) = lim
n→∞

J(un) = m.

Obviously, {J(un)} is bounded. Hence by (3.4) there is a positive constant K0

such that

d||un||2Y ≤ (Run, un)Y ≤ J(un) ≤ K0.

This show that {un} is bounded in Uad. So we can extract a subsequence
(denote again by {un}) of {un} and find a u ∈ Uad such that

un → u weakly in Uad.

Let xn = x(un) be the solution of the following equation corresponding to un:




x
′

n(t) +Axn(t)− divC[ε(xn(t))] = −bn(xn(t)) +Bun(t) + f(t), t ≥ 0,

xn = 0 on Γ1 × (0,∞),

C[ε(xn(y, t))]ν = −(β · ν)xn(y, t) on Γ0 × (0,∞),

xn(0) = x0.

By (2.8) and the above equation, we know {xn} and {x′

n} are bounded in
L2(0, T ;V ) and L2(0, T ;V ∗), respectively. Therefore, by the extraction theo-
rem of Rellich’s, we can find a subsequence of {xn}, say again {xn} and find x
such that

xn(·) → x(·) weakly in L2(0, T ;V ) ∩ C([0, T ];H),

bn(xn) → Ξ weakly in C([0, T ];H).

and

(3.6) x
′

n → x
′

weakly in L2(0, T ;V ∗).

Here, we remark that as seen in Theorem 3.5 of [21], we know that Ξ(y, t) ∈
ϕ(x(y, t)) a.e. in Ω× (0, T ). By Theorem 3.1, we know that

xn(·) → x(·) strongly in L2(0, T ;V ).

From (Hb) it follows that

(3.7) bn(xn) → Ξ strongly in L2(0, T ;H).
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By the boundedness of A we have

(3.8) Axn → Ax strongly in L2(0, T ;V ∗).

Since bn(x) is locally Lipschitz continuous in x, from (3.6)-(3.8) it follows that

ẋn(t) → −Ax(t)+divC[ε(x(t))]−Ξ(x(t))+Bu(t)+f(t), weakly in L2(0, T ;V ∗).

By letting n → ∞ and using the convergence results above, we have proved
that x(t) satisfies a.e. on (0, T ) the following equation:





x
′

(t) +Ax(t) − divC[ε(x(t))] = −Ξ(x(t)) +Bu(t) + f(t), t ≥ 0,

x = 0 on Γ1 × (0,∞),

C[ε(x(y, t))]ν = −(β · ν)x(y, t), on Γ0 × (0,∞),

x(0) = x0.

Since C is continuous on L2(0, T ;D(A)) ∩W 1,2(0, T ;H) and || · ||M is lower
semicontinuous, it holds that

||Cx(u)− zd||M ≤ lim inf
n→∞

||Cx(un)− zd||M .

It is also clear from lim infn→∞ ||R1/2un||Y ≥ ||R1/2u||Y that

lim inf
n→∞

(Run, un)Y ≥ (Ru, u)Y .

Thus,

m = lim
n→∞

J(un) ≥ J(u).

But since J(u) ≥ m by definition, we conclude u ∈ Uad is the desired optimal
control. �

5. Necessary optimal condition

In this section we shall characterize the optimal controls by giving necessary
conditions for optimality. For this it is necessary to write down the necessary
optimal condition

(4.1) DJ(u)(v − u) ≥ 0, v ∈ L2(0, T ;Y )

and to analyze (4.1) in view of the proper adjoint state system, where DJ(u)
denote the Gâteaux derivative of J(v) at v = u. Therefore, we have to prove
that the solution mapping v 7→ x(v) is Gâteaux differentiable at v = u. Here
we note that from Proposition 2.2 it follows immediately that

(4.2) lim
λ→0

x(u+ λw) = x(u) strongly in L2(0, T ;V ) ∩ C([0, T ];H).

The solution map v 7→ x(v) of L2(0, T ;Y ) into L2(0, T ;V )∩C([0, T ];H) is said
to be Gâteaux differentiable at v = u if for any w ∈ L2(0, T ;Y ) there exist a
Dx(u) ∈ L(L2(0, T ;Y ), L2(0, T ;V ) ∩ C([0, T ];H)) such that

∣∣∣∣ 1
λ
(x(u + λw)− x(u))−Dx(u)w

∣∣∣∣ → 0 as λ→ 0.
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The operator Dx(u) denotes the Gâteaux derivative of x(u) at v = u and the
function Dx(u)w ∈ L2(0, T ;V )∩C([0, T ];H) is called the Gâteaux derivative in
the direction w ∈ L2(0, T ;Y ), which plays an important part in the nonlinear
optimal control problems.

Now, we introduce the smoothing system corresponding to (1.1) as follows.
(4.3)



x
′

(t) +Ax(t) − divC[ε(x(t))] = −bn(x(t)) +Bu(t) + f(t), t ≥ 0, n ∈ N,

x = 0 on Γ1 × (0,∞),

C[ε(x(y, t))]ν = −(β · ν)x(y, t) on Γ0 × (0,∞),

x(0) = x0.

Theorem 5.1. Let the assumption (Hb) be satisfied and let u ∈ Uad be an

optimal control for the cost function J in (3.3). Then the following inequality:

(4.4) 〈C∗ΛM (Cx(u)− zd), y〉W1∗,W1
+ (Ru, v − u)L2(0,T ;Y ) ≥ 0, ∀v ∈ Uad

holds, where y = Dx(u)(v − u) ∈ W1 is a unique solution of the following

equation:

(4.5)

{
y

′

(t) +Ay(t)− divC[ε(y)] = −Dbn(x)y(t) +B(u − v)(t), 0 < t ≤ T,

y(0) = 0.

Proof. We set w = v − u. Let λ ∈ (−1, 1), λ 6= 0. We set

y = lim
λ→0

λ−1(x(u + λw) − x(u)) = Dx(u)w.

From (4.3), we have

x′(u+ λw) − x′(u) +A(x(u + λw) − x(u))− divC[ε(x(u + λw) − x(u))]

(4.6)

= − bn(x(u + λw)) + bn(x(u)) + λBw.

It is easily seen that

y = Dx(u)w = x(v) − x(u),

and

lim
λ→0

1

λ
{divC[ε(x(u + λw) − x(u))]} = divC[ε(y)],

lim
λ→0

1

λ
{bn(x(u + λw)) − bn(x(u))} = Dbn(x)y.

Thus, from (4.6) it follows that y = Dx(u)(v − u) satisfies (4.5) and the cost
function J(v) is Gâteaux differentiable at v = u in the direction w = v − u.
The optimal condition (4.1) is rewritten by

(Cx(u)− zd, Cy)M + (Ru, v − u)L2(0,T ;Y )

= 〈C∗ΛM (Cx(u)− zd), y〉W1∗,W1
+ (Ru, v − u)L2(0,T ;Y ) ≥ 0, ∀v ∈ Uad. �
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With every control u ∈ L2(0, T ;Y ), we consider the following distributional
cost function expressed by

(4.6) J1(u) =

∫ T

0

||Cxu(t)− zd(t)||2Xdt+
∫ T

0

(Ru(t), u(t))dt,

where the operator C is bounded from H to another Hilbert space X and
zd ∈ L2(0, T ;X). Finally we are given R is self adjoint and positive definite:

R ∈ L(Y ), and (Ru, u) ≥ c||u||2, c > 0.

Let xu(t) stand for solution of (1.1) associated with the control u ∈ L2(0, T ;Y ).
Let Uad be a closed convex subset of L2(0, T ;Y ).

Theorem 5.2. Let the operators C and R satisfy the conditions mentioned

above. Then there exists a unique element u ∈ Uad such that

(4.7) J1(u) = inf
v∈Uad

J1(v).

Furthermore, it holds the following inequality:

(4.8)

∫ T

0

(Λ−1
Y B∗pu(t) +Ru(t), (v − u)(t))Y dt ≥ 0, ∀v ∈ Uad

holds, where ΛY is the canonical isomorphism Y into Y ∗ and pu satisfies the

following equation:

(4.9)






p′u(t)−A∗pu(t)− div ε∗C∗(pu)−Dbn(x)∗pu(t)

= −C∗ΛX(Cxu(t)− zd(t)) for 0 < t ≤ T,

Pu(T ) = 0.

Proof. Let xu be a solution of (1.1) associated with the control u. Then it
holds that

J1(v) =

∫ T

0

||Cxv(t)− zd(t)||2dt+
∫ T

0

(Rv(t), v(t))dt

=

∫ T

0

||C(xv(t)− x(t)) + Cx(t)− zd(t)||2dt+
∫ T

0

(Rv(t), v(t))dt

= π(v, v) − 2L(v) +

∫ T

0

||zd(t)− Cx(t)||2Xdt,

where

π(u, v) =

∫ T

0

(C(xu(t)− x(t)), C(xv(t)− x(t)))Xdt

+

∫ T

0

(Ru(t), v(t))Y dt

L(v) =

∫ T

0

(zd(t)− Cx(t), C(xv(t)− x(t)))Xdt.
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The form π(u, v) is a continuous bilinear form in L2(0, T ;Y )×L2(0, T ;Y ) and
from assumption of the positive definite of the operator R, we have

π(v, v) ≥ c||v||2, v ∈ L2(0, T ;Y ).

Therefore, by Theorem 3.1 (in virtue of Theorem 1.1 of Chapter 1 in [12]) there
exists a unique u ∈ Uad such that (4.7). If u is an optimal control, similarly
for (4.4), (4.1) is equivalent to

(4.10)

∫ T

0

(C∗ΛX(Cxu(t)− zd(t)), y(t))dt +

∫ T

0

(Ru(t), (v − u)(t))Y dt ≥ 0.

Now we formulate the adjoint system to describe the optimal condition:

(4.11)






p′u(t)−A∗pu(t)− div ε∗C∗(pu(t)) −Dbn(x)∗pu(t)

= −C∗ΛX(Cxu(t)− zd(t)) for 0 < t ≤ T,

Pu(T ) = 0.

Taking into account the regularity result of Proposition 2.1 and the observation
conditions, we can assert that (4.11) admits a unique weak solution pu reversing
the direction of time t → T − t by referring to the wellposedness result of
Dautray and Lions [8, pp. 558–570].

We multiply both sides of equation (4.11) by y(t) of (4.5) and integrate it
over [0, T ]. Then we have

∫ T

0

(C∗ΛX(Cxu(t)− zd(t)), y(t))dt

(4.12)

= −
∫ T

0

(p′u(t), y(t))dt +

∫ T

0

(A∗pu(t), y(t))dt +

∫ T

0

(div ε∗C∗(pu(t)), y(t))dt

+

∫ T

0

(Dbn(x)∗pu(t), y(t))dt.

By the initial value condition of y and the terminal value condition of pu, the
left hand side of (4.12) yields

(pu(T ), y(T ))− (pu(0), y(0)) +

∫ T

0

(pu(t), y
′(t))dt+

∫ T

0

(pu(t), Ay(t))dt

−
∫ T

0

(pu(t), divC[ε(y(t))])dt +

∫ T

0

(pu(t), Db
n(x)y(t))dt

=

∫ T

0

(pu(t), y
′

(t) +Ay(t)− divC[ε(y(t))] +Dbn(x)y(t))dt

=

∫ T

0

(pu(t), B(v − u)(t))dt.
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Let u be the optimal control subject to (4.6). Then (4.10) is represented by

(4.13)

∫ T

0

(pu(t), B(v − u)(t))dt+

∫ T

0

(Ru(t), (v − u)(t))dt ≥ 0,

which is rewritten by (4.8). Note that C∗ ∈ B(X∗, H) and for φ and ψ in X
we have (C∗ΛXCψ, φ) = (Cψ, Cφ). �

Remark 5.3. Identifying the antidualM with M we need not use the canonical
isomorphism ΛM . But in case where M ⊂ V ∗ this leads to difficulties since H
has already been identified with its dual.
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