참고문헌
- H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
- H. E. Bell and Y. Li, Duo group rings, J. Pure Appl. Algebra 209 (2007), no. 3, 833-838. https://doi.org/10.1016/j.jpaa.2006.08.002
- H. H. Brungs, Three questions on duo rings, Pacific J. Math. 58 (1975), no. 2, 345-349. https://doi.org/10.2140/pjm.1975.58.345
- V. Camillo and D. A. Khurana, A characterization of unit regular rings, Comm. Algebra 29 (2001), no. 5, 2293-2295. https://doi.org/10.1081/AGB-100002185
- V. P. Camillo and H.-P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737-4749. https://doi.org/10.1080/00927879408825098
- K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1966), 512-514.
- E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
- K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
- C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167. https://doi.org/10.1016/j.jpaa.2005.01.009
- S. U. Hwang, N. K. Kim, and Y. Lee, On rings whose right annihilators are bounded, Glasg. Math. J. 51 (2009), no. 3, 539-559. https://doi.org/10.1017/S0017089509005163
- Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. https://doi.org/10.4134/BKMS.2009.46.1.135
- N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
- J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
- J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
- Y. Lee, On generalizations of commutativity, Comm. Algebra 43 (2015), no. 4, 1687-1697. https://doi.org/10.1080/00927872.2013.876035
- G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, Singapore, 1987.
- C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Pub-lishers, Dordrecht, 2002.
- L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
-
S. B. Nam, Finite local rings of order
${\preceq}$ 16 with nonzero Jacobson radical, Korean J. Math. 21 (2013), 23-28. https://doi.org/10.11568/kjm.2013.21.1.23 - W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.1090/S0002-9947-1977-0439876-2
- M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
- G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9
- G. Thierrin, On duo rings, Canad. Math. Bull. 3 (1960), 167-172. https://doi.org/10.4153/CMB-1960-021-7
- L. Xu and W. Xue, Structure of minimal non-commutative zero-insertive rings, Math. J. Okayama Univ. 40 (1998), 69-76.
피인용 문헌
- UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS vol.53, pp.6, 2016, https://doi.org/10.4134/BKMS.b150684