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CERTAIN CURVATURE CONDITIONS OF REAL
HYPERSURFACES IN A COMPLEX HYPERBOLIC SPACE

HyanG Sook Kim AND JIN SUK PAK

ABSTRACT. The purpose of this paper is to study real hypersurfaces im-
mersed in a complex hyperbolic space CH™ and especially to investigate
certain curvature conditions for such real hypersurfaces to be the model
hypersurfaces in classification theorem (said to be Theorem M-R) given
by Montiel and Romero ([4]) in Section 3.

1. introduction

Let CH™ be an n-dimensional complex hyperbolic space with Bergmann
metric of constant holomorphic sectional curvature —4 and let M be a real hy-
persurface of CH™. Then M has an almost contact metric structure (¢, U, u, g)
induced from the complex structure of CH™ (cf. [3, 4]). On a real hypersurface
we can consider two structures, namely, an almost contact structure ¢ and a
submanifold structure represented by the second fundamental form H. In this
point of view many differential geometers have investigated real hypersurfaces
under some conditions concerning those structures (cf. [1, 3, 4, 5]). In particu-
lar, Montiel and Romero ([4]) have classified the real hypersurface M of CH™
which satisfies the commutativity condition such that

(1.1) ¢oH = H¢

by using the S'-fibration 7 : H;" ™' — C'H™ of the anti-de Sitter space H;" 1!
over CH™ and obtained a classification theorem (see Theorem M-R in Section
3).

In this paper we investigate certain curvature conditions for real hypersur-
faces to be the model hypersurfaces given in Theorem M-R.

All manifolds, submanifolds and geometric objects will be assumed to be
connected, differentiable and of class C'°°, and all maps also be of class C'*° if
not stated otherwise.
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2. Fundamental equations for hypersurfaces of CH™

Let M be a real hypersurface of a complex hyperbolic space CH™. Denote
by (J, G) the Kéhler structure of CH™ and g the induced metric on M from G.
We also denote by & the unit vector field normal to M. For any vector field X
tangent to M, we have the following decomposition in tangential and normal
components:

(2.1) JX = ¢X + u(X)E,

(2.2) JE = —U,

where ¢ is a tensor field of type (1,1), u a 1-form and U a vector field on M.
Since the structure (J, G) is Hermitian and J2? = —1, it follows from (2.1) and
(2.2) that for any tangent vector fields X,Y to M the following equations are
established

(2.3) $*X = —X +u(X)U, oU =0, u(U) =1,

(2.4) 9(6X,9Y) = g(X,Y) —u(X)u(Y), g(U, X) = u(X).

The equations (2.3) and (2.4) tell us that the aggregate (¢, U, u,g) defines an
almost contact metric structure on M.

Now let V and V be the Levi-Civita connections on CH™ and M, respec-
tively. Then Gauss and Weingarten formulae are given by

(2.5) VxY =VxY +h(X,Y),

(2.6) Vxé=-HX

for vector fields X and Y tangent to M. Here and in the sequel h and H denote
the second fundamental form and the shape operator corresponding to the unit
normal vector field &, respectively. It is clear that h and H are related by

hMX,Y)=g(HX,Y)E.

On the other hand, since the ambient manifold is Ké&hlerian manifold, dif-
ferentiating (2.1) and (2.2) covariantly and using (2.5) and (2.6) and thus com-
paring with tangential and normal parts respectively, we have

(2.7) (Vxo)Y =u(Y)HX — g(HY, X)U,

(2.8) (Vxu)Y = g(pHX,Y), VxU = pHX

for any vector fields X,Y tangent to M.
Moreover, since the ambient manifold CH™ is of constant holomorphic sec-
tional curvature —4, its Riemannian curvature tensor R satisfies

ByvZ = —{GTV.2)X - GX,2)7
+GUY,Z)JX - GIX,Z
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for any vector fields X, Y, Z tangent to CH". Hence equations of Gauss and
Codazzi imply
(29) RxyZ = 7{g(Ya Z)ng(Xa Z)Y

+9(8Y, Z)¢X — g(¢X, Z)9Y — 29(¢X,Y)9Z}
(2.10) (VxH)(Y)—(VyH)(X) = —{g(X,U)¢Y —g(Y,U)pX —29(¢X,Y)U}
for any vector fields X,Y, Z tangent to M, where R denotes the Riemannian
curvature tensor of M (cf. [2]).
3. Fibrations and immersions

Let H7"™! be an anti-de Sitter space

(3.1) H" W = {2 € C"" | F(z,2) = 1},
where F is a Hermitian form in C™*! defined by
(3.2) F(z,2) = —z0Wo + Z 2L Wk
k=1
for 2 = (20,21, .., 2n), W = (wo,w1,...,w,) € C*TL. If 2 € H""! then it
follows that
(3.3) T.H" ' = {w e C"! |ReF(z,w) = 0}.

The restriction § of ReF on Hy" ™! is a Lorenzian structure with constant
sectional curvature —1. Let

T H"— CH"

be the natural projection of H:"™! onto CH™ defined by the Hopf-fibration
St — H2" ! — CH". As is well known that it is a Riemannian submersion
with fundamental tensor J and time-like totally geodesic fibers. If z € H f"“,
putting V = Jz € T, H?"*! and then we have the following orthogonal decom-
position

(3.4) T.H{""' =T, CH" & span{V'}.

For a real hypersurface M of CH", we can construct a Lorentzian hyper-
surface M’ = 7= 1(M) of H?"** which is a principal S'-bundle over M with
time-like totally geodesic fibers and projection m : M’ — M (cf. [2, 4]).
Moreover, the diagram

-7
K2

M/ H12n+1

" |7

M —— CH"
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is commutative where 7 and ¢’ are immersions, respectively. In this way, if
z € M’', then we can put

(35) TZM/ = Tﬂ./(z)M D Span{V}.

Given integers p, ¢ with p+ ¢ =n—1and r € R with 0 < r < 1, let
Mopi1,2¢+1(r) be the Lorentz hypersurface of H12”Jr1 defined by the following
equations

n P
—[zol* + Y lzl* = =1, r(=l2ol* + Dl == D lal
k=1 k=1

k=p+1

where z = (20, 21,...,2n) € C" 1. Moreover Mo, y1,24+1(7) is isometric to the
product
H{" 1/ (r = 1)) x ST (r/(1 =),

where 1/(r—1) and r/(1 —r) denote the square of the radii and each is embed-
ded in Hf"‘"1 in a totally umbilical way. Since May, 11 24+1(r) is Sl-invariant,
M3, 1 9g01(r) = T(Mapy1,2441(r)) is the real hypersurface of CH™ which is
complete and satisfies the condition (1.1).

As already mentioned in Section 1, Montiel and Romero ([4]) have classified
real hypersurfaces of CH™ which satisfy the commutativity condition (1.1),
and thus obtained the following classification theorem:

Theorem M-R. Let M be a complete real hypersurface of CH™ which satisfies
the condition (1.1). Then we have the following:

(1) M has three constant principal curvatures tanh 0, coth @, 2 coth 20 with
multiplicities 2p, 2q, 1, respectively, p +q = n — 1. Moreover M is
congruent to M3, 1 5,11 (tanh®6).

(2) M has two constant principal curvatures A1, Ao with multiplicities 2n—
1 and 1, respectively.

(a) If Ay > 1, then Ay = cothf, Ay = coth20 with § > 0 and M s
congruent to a geodesic hypersphere Mlh,%_l(tanhQ ),

(b) If \y < 1, then Ay = tanh 6, Ay = 2 coth 20 with 0 > 0 and M is
congruent to a geodesic hypersphere Mﬁn_l,l(tanhQ ),

(¢) If \y =1, then Ay = 2 and M is congruent to a horosphere.

Now let & be a local unit vector field normal to M defined near w(z). We
also denote ¢ its lift by m, which is a local unit vector field normal to M’ near
to z. We denote by X* the horizontal lift of a vector field X tangent to M.
(In what follows we shall delete the ¢ and ¢/, in our notations.) Then the
following fundamental equations called co-Gauss and co-Codazzi formulae for
the submersion 7 are given by

(3.6) 'Vx-Y*=(VxY) +d((¢X)", YV, 'VyX*= Vx.V = ($X)",

where ¢’ denotes the Riemannian metric of 7~'(M) induced from § of H" !
and 'V the Levi-Civita connection with respect to ¢’. The similar equations
are valid for the submersion 7 by replacing ¢ with J.
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4. Main results

In this section we will investigate certain curvature conditions for the real
hypersurface M of a complex hyperbolic space form C'H™ which imply con-
dition (1.1). Moreover we will obtain six curvature conditions which satisfy
¢oH = H¢, that is, the necessary condition of Theorem M-R in Section 3. Con-
sequently we will provide six classification theorems for real hypersurfaces of
CH™ to be the model hypersurfaces in Theorem M-R.

It follows from (3.6) that

(41)  'Vx'Vy-Z" = (VxVyZ) + ¢ ((#Y)*, Z")(6X)"
+{g((¢Y)", (Vx 2)") + ¢ ((¢6X)", (V¥ Z)" )}V
+{g'((¢X)", (Vv 2)")}V,

(4.2) [(X* V¥ = [X,Y]" +2¢'((¢X)*, Y*)V, [X*, V] =0.

Using the above equations and taking account of (2.9) and (2.10) with ¢ = —4
we can easily see that

(4.3)  'R(X*,Y")Z* = g(X,Z2)"Y* — g(Y, Z)* X*

+g(HY,Z)"HX" —g(HX,Z)"HY™*

{9V U)'g(HX, Z)" — g(X,U)"g(HY, Z)"}V,
where 'R denotes the Riemannian curvature tensor of M. Therefore we have:

Theorem 4.1. Let M be a real hypersurface of a complex hyperbolic space
CH™. If (Vy'R)(X*,Y*)U* =0 and g(HU,U) # 0 at least one point of M,
then ¢H = H¢.

Proof. Since 'VyU* = (¢U)* =0, we get
(Vy/R)(X*, YIU* = 'Vy (R(X*,Y*)U)
—'R(VyX*, YU* —'R(X*,'VyY*U*,
which combined with the fact that ('V'R)(X*,Y*)U* = 0 implies
Vv ('R(X*, Y)U*) = 'R(Vy X*, YU +'R(X*,'Vy Y*)U*.
From (4.3), we obtain
(4.4)  'R(X*,Y)U* = g(X,U)*Y* — g(Y,U)*X*
+g(HY,U)*HX"* —g(HX,U)*HY "
+{g(YV,U)"g(HX,U)" = g(X,U)"g(HY,U)"}V,
which together with (2.3) gives
(45) VRO, YOU) = g(X, U) (V)" — (¥, U)* (6X)"
+9(HY,U)" (¢HX)" — g(HX,U)*(¢HY)",
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which joined with (4.3) yields
(4.6) 'R(Vy X* Y \U* +'R(X*,'VyY*)U*
=g9(X,U)"(¢Y)" — g(Y,U)"(¢X)"
4 g(HY,U) (HOX)* — g(HX,U) (HoY)"
+9(HoY,U)" (HX)" — g(HoX,U)"(HY)"
+ {9V, U)"g(HeX,U)" — g(X,U)"g(HeY,U)"}V.
Comparing with vertical parts in (4.5) and (4.6) respectively, we get

(4.7) gV, U)g(HopX,U) — g(X,U)g(HeY,U) = 0.
Also comparing with horizontal parts in (4.5) and (4.6) respectively, we obtain
(4.8) g(HY,U)(¢H — Hp)X — g(HX,U)(¢H — Hp)Y

=g(H¢Y,U)HX — g(HopX,U)(HY).

Putting Y = U into (4.7), we can see that ¢HU = 0, thus we have HU = aU,
where a = g(HU, U). By putting Y = U into (4.8), we get a(¢H — Hp)X = 0.

On the other hand, differentiating HU = aU covariantly along M and mak-
ing use of (2.8), we have

g(U,(VxH)Y) +g(HpHX,Y) = (Xa)g(U,Y) + ag(¢HX,Y),

where we have used the fact Vx is skew-symmetric. Taking the skew-symmetric
part of the last equation and using the Codazzi equation (2.10), we get

(4.9) —29(X,9Y) +29(pHX,HY)
Similarly, putting Y = U into (4.9), we have

(4.10) Xa=pg(X,U),
where § = Ua. Combining (4.9) with (4.10) imply
(411)  —2g(X,0V) + 29(6HX, HY) = ag((¢H + HH)X,Y).

Differentiating (4.10) covariantly along M and using (2.8), we have
YXa=(YPB)g(X,U)+ plg(¢HY, X) + g(Vy X, U)}.

Taking the skew-symmetric part of the last equation and making use of (4.10),
we obtain

(YB)g(X,U) = (XB)g(Y,U) + Bg((¢H + HP)Y, X) =0
and putting Y = U into the last equation, we get
Xp=(UB)g(X,U)
thus consequently we have

(4.12) B(pH + H$)X = 0.
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Therefore H + H¢ = 0 on the open set S = {z € M |B(z) # 0}. Owing to
the fact that a(¢H — Hp)X = 0, we have aHX = 0 on S, which gives

ag(¢X,Y) =0

on S. Hence o« = 0 on S and consequently we get § = 0 on S, which is
a contradiction. Thus we have § = 0 identically on M, so « is constant.
Therefore, if « = g(HU,U) # 0 at least one point of M, then we conclude
¢oH — Hp = 0. O

Remark. If H — Hp =0 and n > 1, then o # 0.

Indeed, if we set
V:=VyU + (divU)U,
then we can see that
1
divV = 5||¢>H — Ho||* + g(HU,U)(trH) — trH?* — 2(n — 1).
Since the commutativity condition such that ¢H — H¢ = 0 implies HU = U,
consequently we conclude V' = 0. Thus, if a = 0, then
trH? 4+2(n—1) = 0.
This yields n = 1, which is a contradiction.

Owing to Theorem 4.1, we have:

Theorem 4.2. Let M be a real hypersurface of a complex hyperbolic space
CH"™. If ('Vy'R)(Y*,U*)X* =0 and g(HU,U) # 0 at least one point of M,
then oH = H¢.
Proof. Since 'VyU* = (¢U)* =0, we get
(V' R)(Y*, UX* ='Vy(R(Y* U )X¥)
—'R(VyY*, UHX* —'R(Y*, U*)'Vy X*,
which combined with the fact that ('Vy/R)(Y*,U*)X* = 0 implies
"Vv(RY*, UX*) ="R(VyY*, U)X*+'R(Y*,U*)Vy X*.
Then from (4.3), the last equation reduces to
(4.13) 'R(Y*, UM)X* = g(Y, X)U* — g(U, X)*Y*
+g(HU,X)*HY* — g(HY, X)*HU"
T {g(HY, X)* = g(Y,U)*g(HU, X)}V,
which together with (2.3) gives
(414)  Ve(R(Y,UNX) = — g(X,U) (6Y)" + g(HU, X)* ($HY )"
— g(HY, X)"(6HUY",
and by means of (4.3), the last equation (4.14) yields
(4.15) 'R(VyY*, US)X* + 'R(Y*,U*)Vy X*
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= —g(X,U)"(¢Y)" +g(HU,X)" (HoY)" — g(HoY, X)"(HU)*
T g(HU,6X)"(HY)" — g(HY, 6X)"(HU)"
+{g(HY, X)" + g(HY,pX)" — g(Y,U)"g(HU, $X)"}V.
Comparing with vertical parts in (4.14) and (4.15) respectively, we get
(416)  g(HGY, X) + g(HY, 6X) — g(¥,U)g(HU, 6X) = 0.

Putting X = U into (4.16), we get pHU=0, thus we have HU = aU, where
a = g(HU,U). Also comparing with horizontal parts in (4.14) and (4.15)
respectively, we get

(4.17) g(HU, X)(¢HY) — g(HY, X)(¢HU)
= g(HU,¢X)(HY) — g(HY, $X)(HU)
+g(HU, X)(H¢Y) — g(HoY, X )(HU).

Putting X = U into the above equation (4.17) and making use of the fact that
HU = aU, we obtain a(¢pH — Hp)Y = 0. Owing to similar method as it in

the proof of Theorem 4.1, we conclude ¢H — Hep = 0. O
From (2.4) and (3.6) it follows that
(4.18) /VY*/V)(* = (Vy(¢X))" + g(¢Y, ¢X)*V,
(4.19) 'Vv'Vy- X" = (6(Vy X))",
(4.20) Vy'VyX* = (Vy(6X))* + g(oY, pX)*V,
(4.21) 'Vv'Vx:V =-X*"+g(X,U)U",
which together with (4.2) and the fact that fibre is totally geodesic imply
(4.22) 'RY", X")V = ((Vy9)X)" — (Vx9)Y)",
(4.23) 'R(Y*,V)X* = g(X,U)* (HY)" — g(HY, X)*U*
+9(X, YY)V —g(X,U)"g(Y,U)"V,
(4.24) 'RY* V)V = Y* — g(Y,U)'U*.

Therefore we get:

Theorem 4.3. Let M be a real hypersurface of a complex hyperbolic space
CH"™. If (Vv'R)(Y*, X*)V =0, then oH = H¢.

Proof. Since 'V V = 0, we have
(Vy/R)(Y*, X*)W = "V (RY*, X*)V)

CIR(VyY*, X)W —R(Y*,'Vy XV,
which combined with the fact that ('Vy'R)(Y*,U*)X* = 0 implies
(4.25) Wy (RY*, X)WV) = 'ROVyY*, X)W +'RY*,'Vy X*)V.
Because of (2.7) and (4.22), we obtain
(426)  ROC,XOV = g(X,U)(HY) — g(V,U)* (HX)",
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which together with (4.25) reduces to
(4.27) 9(X,U)pHY — g(Y,U)pHX = g(X,U)H¢Y — g(Y,U)HpX.

Putting Y = U into (4.27) and taking inner product with U, we get ¢HU = 0.
Consequently from (4.27) it follows that (¢H — Hp)X = 0. O

Thus owing to Theorem 4.3, we have also:

Theorem 4.4. Let M be a real hypersurface of a complex hyperbolic space
If (Vy'R)(Y*,V)X* =0, then ¢H = H¢.

Proof. Since 'V V =0, we get
(VV'R)(Y*,V)X* ='Vy(RY™",V)X")
—'R(VyY* V)X* —'R(Y*,V)VyX*,
which together with the fact that ("Vy'R)(Y™*,V)X* = 0 implies

(4.28) Vv (R(Y*, V)X*) ='R(VyY*, V)X* +'R(Y*, V) VyX*.
Using (4.23), we obtain

(4.29) Wy (R(Y*,V)X*) = g(X,U)* (6HY)".

Since

(4.30) 'R('VyY*, V)X*+'R(Y*,V)VyX*

= g(X,U)" (HoY)" — g(HoY, X)"U" — g(HY, 9 X)"U
we get
9(X,U)pHY = g(X,U)(H¢Y) — g(HoY, X)U — g(HY, $X)U.

Putting X =Y = U into (4.30), we get ¢HU = 0, thus we have HU = aU,
where o = g(HU,U). Also putting X = U into (4.30), consequently we get
(pH — Hp)X = 0. O

Therefore similarly we have:

Theorem 4.5. Let M be a real hypersurface of a complex hyperbolic space
If (Vz-'R)(Y*,V)X* =0, then ¢H = H¢.

Proof. Since
(Vz/R)(Y*V)X*='Vz('RY*,V)X¥)
—'R(’ VZ*Y )X* —'R(Y*,'V 2. V)X
'R(Y*, V)V 2z X",
we have ('Vz+'R)(Y*,V)X* = 0, which unphes
'Vz(R(Y*,V)X™)
='R(VzY*\V)X*+'R(Y*,'V2V)X* +'R(Y*,V)('V 2 X*).
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Taking use of (3.6) and (4.23), we get
(4.31)  'Vz(RY™*,V)X*)
=9(VzX,U)"(HY)" +9(X,9HZ) (HY)" + g(X,U)"(Vz(HY))"
— g(V2X, HY)'U* — g(X,V5(HZ))'U* — g(X, HY )" (¢HZ)"
+9(X,Y)(92)" —g(X,U)"g(Y,U)"(¢2)"
+{9(X,U)"9(¢2, HY)" + g(VzX,Y)" + g(X,VzY)"
—9(VzX,U)"g(Y,U)" — g(X,0H Z)"g(Y,U)"
—9(X,U)"g(VzY,U)" —g(X,U)"g(Y,pHZ)"}V.
Taking account of (3.6) and (4.23) and the fact that 'R(-, ) is skew symmetric,
we obtain
(4.32) "RV 7 Y* VX* = g(X,U)*(H(VzY))* —g(X,H(VzY))*U*
+{9(X,V2Y)" —g(X,U)"g(VZY,U)"}V.
From (4.3) it follows that
(4.33) "R(Y*,'V 2 V)X* = g(Y, X)*(¢Z)* — g(¢Z, X )*Y*
+9(HoZ, X)"(HY)" —g(HY, X)"(H¢Z)"
—9(Y,U)"g(HoZ, X)"V.
By means of (3.6), (4.23) and (4.24), we obtain
(4.34)  'ROY*,\V)(Vz-X*) = g(VzX,U)"(HY)* — g(Vz X, HY)*U*
+9(¢Z, X)Y" = g(0Z, X)"g(Y,U)"U”
+{9(VzX,Y)" —g(Vz X, U)"g(Y,U)"}V.
Thus from (4.32), (4.33) and (4.34), it follows that
(4.35) 'RV Y*, V)X* +'R(Y*,'VzV)X* + ' RY*, V)(V 2 X*)
= g9(X,U) (H(VzY))" —g(X, H(VzY))"U"
+{9(X,V2Y)" —g(X,U)"g(VzY,U)"}V
+9(Y, X)"(62)" — 9(62, X)"Y" + g(HoZ, X)"(HY )"
— g(HY, X) (H6Z)" — (Y, U)*g(HoZ, X)°V
1 (V4 X,U)* ( YY) — g(Vz X, HY ) U*
+9(0Z, X)Y" —g(¢Z, X)"g(Y,U)"U"
+{9(VzX,Y)" = g(VzX,U)"g(Y,U)"}V.

Comparing with vertical parts in (4.31) and (4.35) respectively, we get

(4.36) 9(X,U)g(¢Z, HY ) — g(X,0HZ)g(Y,U) — g(X,U)g(Y,pH Z)
= —g(Y,U)g(HpZ,X).
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Putting X = U into (4.36), we have

Also putting Y = U into (4.36), we obtain ¢ HU = 0, which together with
(4.37) reduces to pH — Hp = 0. O

Finally owing to Theorem 4.5, we get:

Theorem 4.6. Let M be a real hypersurface of a complex hyperbolic space
CH"™. If 'Vz'R)(V,X*)V =0, then ¢H = H¢.

Proof. Since
(Vz'R)(V,X")V ="Vz('R(V,X")V)
~'R(V 2V, X)WV —"R(V,'V 2. X*)V
—'R(V, X*)'V 2V,
we have ('Vz+'R)(Y*,V)X* = 0, which implies
'Vz((R(V,X*)V) ="R(V 2V, X*)V+'R(V,'V2: X*)V+'R(V,X*)('V 2 V).
From (3.6) and (4.24) it follows that
(4.38) 'Y - (R(V, X*)V)
= — (V2X)' + (V2 X, U)'U* + g(X,pHZ) U*
+9(X,U)(oHZ)* + g(¢ X, Z)*V.
By means of (3.6), (4.22), (4.23) and (4.24), we obtain
(4.39) 'R(V z:V, X*)V +'R(V,'V2: X*)V +'R(V, X*)('V 2 V)
=g9(X,U)"(HoZ)" = (V2X)" +9(V2X,U)*U"
+g(HX,0Z)'U* 4+ g(¢pX, Z)*V.
Comparing with horizontal parts in (4.38) and (4.39) respectively, we get
(4.40) (X, 0HZ)U + g(X,U)oHZ = ¢(X, HpZ)U + g(X,U)HoZ.

Putting X = Z = U into (4.40), we get ¢HU = 0. Also putting X = U into
(4.40), we conclude ¢H — H¢p = 0. O
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