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CERTAIN CURVATURE CONDITIONS OF REAL

HYPERSURFACES IN A COMPLEX HYPERBOLIC SPACE

Hyang Sook Kim and Jin Suk Pak

Abstract. The purpose of this paper is to study real hypersurfaces im-
mersed in a complex hyperbolic space CHn and especially to investigate
certain curvature conditions for such real hypersurfaces to be the model
hypersurfaces in classification theorem (said to be Theorem M-R) given
by Montiel and Romero ([4]) in Section 3.

1. introduction

Let CHn be an n-dimensional complex hyperbolic space with Bergmann
metric of constant holomorphic sectional curvature −4 and let M be a real hy-
persurface of CHn. Then M has an almost contact metric structure (φ, U, u, g)
induced from the complex structure of CHn (cf. [3, 4]). On a real hypersurface
we can consider two structures, namely, an almost contact structure φ and a
submanifold structure represented by the second fundamental form H . In this
point of view many differential geometers have investigated real hypersurfaces
under some conditions concerning those structures (cf. [1, 3, 4, 5]). In particu-
lar, Montiel and Romero ([4]) have classified the real hypersurface M of CHn

which satisfies the commutativity condition such that

(1.1) φH = Hφ

by using the S1-fibration π̃ : H2n+1
1 −→ CHn of the anti-de Sitter space H2n+1

1

over CHn and obtained a classification theorem (see Theorem M-R in Section
3).

In this paper we investigate certain curvature conditions for real hypersur-
faces to be the model hypersurfaces given in Theorem M-R.

All manifolds, submanifolds and geometric objects will be assumed to be
connected, differentiable and of class C∞, and all maps also be of class C∞ if
not stated otherwise.
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2. Fundamental equations for hypersurfaces of CH
n

Let M be a real hypersurface of a complex hyperbolic space CHn. Denote
by (J,G) the Kähler structure of CHn and g the induced metric on M from G.
We also denote by ξ the unit vector field normal to M . For any vector field X
tangent to M , we have the following decomposition in tangential and normal
components:

(2.1) JX = φX + u(X)ξ,

(2.2) Jξ = −U,

where φ is a tensor field of type (1,1), u a 1-form and U a vector field on M .
Since the structure (J,G) is Hermitian and J2 = −I, it follows from (2.1) and
(2.2) that for any tangent vector fields X,Y to M the following equations are
established

(2.3) φ2X = −X + u(X)U, φU = 0, u(U) = 1,

(2.4) g(φX, φY ) = g(X,Y )− u(X)u(Y ), g(U,X) = u(X).

The equations (2.3) and (2.4) tell us that the aggregate (φ, U, u, g) defines an
almost contact metric structure on M .

Now let ∇ and ∇ be the Levi-Civita connections on CHn and M , respec-
tively. Then Gauss and Weingarten formulae are given by

(2.5) ∇XY = ∇XY + h(X,Y ),

(2.6) ∇Xξ = −HX

for vector fields X and Y tangent to M . Here and in the sequel h and H denote
the second fundamental form and the shape operator corresponding to the unit
normal vector field ξ, respectively. It is clear that h and H are related by

h(X,Y ) = g(HX,Y )ξ.

On the other hand, since the ambient manifold is Kählerian manifold, dif-
ferentiating (2.1) and (2.2) covariantly and using (2.5) and (2.6) and thus com-
paring with tangential and normal parts respectively, we have

(2.7) (∇Xφ)Y = u(Y )HX − g(HY,X)U,

(2.8) (∇Xu)Y = g(φHX, Y ), ∇XU = φHX

for any vector fields X,Y tangent to M .
Moreover, since the ambient manifold CHn is of constant holomorphic sec-

tional curvature −4, its Riemannian curvature tensor R satisfies

RX̄Ȳ Z = − {G(Y , Z)X −G(X,Z)Y

+G(JY , Z)JX −G(JX,Z)JY − 2G(JX, Y )JZ}
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for any vector fields X, Y , Z tangent to CHn. Hence equations of Gauss and
Codazzi imply

RXY Z = − {g(Y, Z)X − g(X,Z)Y(2.9)

+ g(φY, Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}

+ {g(HY,Z)HX − g(HX,Z)HY },

(2.10) (∇XH)(Y )−(∇Y H)(X) = −{g(X,U)φY −g(Y, U)φX−2g(φX, Y )U}

for any vector fields X,Y, Z tangent to M , where R denotes the Riemannian
curvature tensor of M (cf. [2]).

3. Fibrations and immersions

Let H2n+1
1 be an anti-de Sitter space

(3.1) H2n+1
1 = {z ∈ Cn+1 |F (z, z) = −1},

where F is a Hermitian form in Cn+1 defined by

(3.2) F (z, z) = −z0w0 +

n∑

k=1

zkwk

for z = (z0, z1, . . . , zn), w = (w0, w1, . . . , wn) ∈ Cn+1. If z ∈ H2n+1
1 , then it

follows that

(3.3) TzH
2n+1
1 = {w ∈ Cn+1 |ReF (z, w) = 0}.

The restriction g̃ of ReF on H2n+1
1 is a Lorenzian structure with constant

sectional curvature −1. Let

π̃ : H2n+1
1 −→ CHn

be the natural projection of H2n+1
1 onto CHn defined by the Hopf-fibration

S1 −→ H2n+1
1 −→ CHn. As is well known that it is a Riemannian submersion

with fundamental tensor J and time-like totally geodesic fibers. If z ∈ H2n+1
1 ,

putting V = Jz ∈ TzH
2n+1
1 and then we have the following orthogonal decom-

position

(3.4) TzH
2n+1
1 = Tπ(z)CHn ⊕ span{V }.

For a real hypersurface M of CHn, we can construct a Lorentzian hyper-
surface M ′ = π̃−1(M) of H2n+1

1 which is a principal S1-bundle over M with
time-like totally geodesic fibers and projection π : M ′ −→ M (cf. [2, 4]).
Moreover, the diagram

M ′
i′

−−−−→ H2n+1
1

π

y
yπ̃

M
i

−−−−→ CHn
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is commutative where i and i′ are immersions, respectively. In this way, if
z ∈ M ′, then we can put

(3.5) TzM
′ = Tπ′(z)M ⊕ span{V }.

Given integers p, q with p + q = n − 1 and r ∈ R with 0 < r < 1, let
M2p+1,2q+1(r) be the Lorentz hypersurface of H2n+1

1 defined by the following
equations

−|z0|
2 +

n∑

k=1

|zk|
2 = −1, r(−|z0|

2 +

p∑

k=1

|zk|
2) = −

n∑

k=p+1

|zk|
2,

where z = (z0, z1, . . . , zn) ∈ Cn+1. Moreover M2p+1,2q+1(r) is isometric to the
product

H2p+1
1 (1/(r − 1))× S2q+1

1 (r/(1 − r)),

where 1/(r−1) and r/(1− r) denote the square of the radii and each is embed-
ded in H2n+1

1 in a totally umbilical way. Since M2p+1,2q+1(r) is S1-invariant,
Mh

2p+1,2q+1(r) := π(M2p+1,2q+1(r)) is the real hypersurface of CHn which is
complete and satisfies the condition (1.1).

As already mentioned in Section 1, Montiel and Romero ([4]) have classified
real hypersurfaces of CHn which satisfy the commutativity condition (1.1),
and thus obtained the following classification theorem:

Theorem M-R. Let M be a complete real hypersurface of CHn which satisfies

the condition (1.1). Then we have the following:

(1) M has three constant principal curvatures tanh θ, coth θ, 2 coth 2θ with

multiplicities 2p, 2q, 1, respectively, p + q = n − 1. Moreover M is

congruent to Mh
2p+1,2q+1(tanh

2 θ).
(2) M has two constant principal curvatures λ1, λ2 with multiplicities 2n−

1 and 1, respectively.
(a) If λ1 > 1, then λ1 = coth θ, λ2 = coth 2θ with θ > 0 and M is

congruent to a geodesic hypersphere Mh
1,2n−1(tanh

2 θ),
(b) If λ1 < 1, then λ1 = tanh θ, λ2 = 2 coth 2θ with θ > 0 and M is

congruent to a geodesic hypersphere Mh
2n−1,1(tanh

2 θ),
(c) If λ1 = 1, then λ2 = 2 and M is congruent to a horosphere.

Now let ξ be a local unit vector field normal to M defined near π(z). We
also denote ξ its lift by π, which is a local unit vector field normal to M ′ near
to z. We denote by X∗ the horizontal lift of a vector field X tangent to M .
(In what follows we shall delete the i′ and i′

∗
in our notations.) Then the

following fundamental equations called co-Gauss and co-Codazzi formulae for
the submersion π are given by

(3.6) ′∇X∗Y ∗ = (∇XY )∗ + g′((φX)∗, Y ∗)V, ′∇V X
∗ =′ ∇X∗V = (φX)∗,

where g′ denotes the Riemannian metric of π−1(M) induced from g̃ of H2n+1
1

and ′∇ the Levi-Civita connection with respect to g′. The similar equations
are valid for the submersion π̃ by replacing φ with J .
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4. Main results

In this section we will investigate certain curvature conditions for the real
hypersurface M of a complex hyperbolic space form CHn which imply con-
dition (1.1). Moreover we will obtain six curvature conditions which satisfy
φH = Hφ, that is, the necessary condition of Theorem M-R in Section 3. Con-
sequently we will provide six classification theorems for real hypersurfaces of
CHn to be the model hypersurfaces in Theorem M-R.

It follows from (3.6) that

′∇X∗

′∇Y ∗Z∗ = (∇X∇Y Z)∗ + g′((φY )∗, Z∗)(φX)∗(4.1)

+ {g′((φY )∗, (∇XZ)∗) + g′((φX)∗, (∇Y Z)∗)}V

+ {g′((φX)∗, (∇Y Z)∗)}V,

(4.2) [X∗, Y ∗] = [X,Y ]∗ + 2g′((φX)∗, Y ∗)V, [X∗, V ] = 0.

Using the above equations and taking account of (2.9) and (2.10) with c = −4,
we can easily see that

′R(X∗, Y ∗)Z∗ = g(X,Z)∗Y ∗ − g(Y, Z)∗X∗(4.3)

+ g(HY,Z)∗HX∗ − g(HX,Z)∗HY ∗

+ {g(Y, U)∗g(HX,Z)∗ − g(X,U)∗g(HY,Z)∗}V,

where ′R denotes the Riemannian curvature tensor of ′M . Therefore we have:

Theorem 4.1. Let M be a real hypersurface of a complex hyperbolic space

CHn. If (′∇V
′R)(X∗, Y ∗)U∗ = 0 and g(HU,U) 6= 0 at least one point of M ,

then φH = Hφ.

Proof. Since ′∇V U
∗ = (φU)∗ = 0, we get

(′∇V
′R)(X∗, Y ∗)U∗ = ′∇V (

′R(X∗, Y ∗)U∗)

− ′R(′∇V X
∗, Y ∗)U∗ − ′R(X∗, ′∇V Y

∗)U∗,

which combined with the fact that (′∇V
′R)(X∗, Y ∗)U∗ = 0 implies

′∇V (
′R(X∗, Y ∗)U∗) = ′R(′∇V X

∗, Y ∗)U∗ + ′R(X∗, ′∇V Y
∗)U∗.

From (4.3), we obtain

′R(X∗, Y ∗)U∗ = g(X,U)∗Y ∗ − g(Y, U)∗X∗(4.4)

+ g(HY,U)∗HX∗ − g(HX,U)∗HY ∗

+ {g(Y, U)∗g(HX,U)∗ − g(X,U)∗g(HY,U)∗}V,

which together with (2.3) gives

′∇V (
′R(X∗, Y ∗)U∗) = g(X,U)∗(φY )∗ − g(Y, U)∗(φX)∗(4.5)

+ g(HY,U)∗(φHX)∗ − g(HX,U)∗(φHY )∗,
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which joined with (4.3) yields

′R(′∇V X
∗, Y ∗)U∗ + ′R(X∗, ′∇V Y

∗)U∗(4.6)

= g(X,U)∗(φY )∗ − g(Y, U)∗(φX)∗

+ g(HY,U)∗(HφX)∗ − g(HX,U)∗(HφY )∗

+ g(HφY,U)∗(HX)∗ − g(HφX,U)∗(HY )∗

+ {g(Y, U)∗g(HφX,U)∗ − g(X,U)∗g(HφY,U)∗}V.

Comparing with vertical parts in (4.5) and (4.6) respectively, we get

(4.7) g(Y, U)g(HφX,U)− g(X,U)g(HφY,U) = 0.

Also comparing with horizontal parts in (4.5) and (4.6) respectively, we obtain

g(HY,U)(φH −Hφ)X − g(HX,U)(φH −Hφ)Y(4.8)

= g(HφY,U)HX − g(HφX,U)(HY ).

Putting Y = U into (4.7), we can see that φHU = 0, thus we have HU = αU ,
where α = g(HU,U). By putting Y = U into (4.8), we get α(φH −Hφ)X = 0.

On the other hand, differentiating HU = αU covariantly along M and mak-
ing use of (2.8), we have

g(U, (∇XH)Y ) + g(HφHX, Y ) = (Xα)g(U, Y ) + αg(φHX, Y ),

where we have used the fact∇X is skew-symmetric. Taking the skew-symmetric
part of the last equation and using the Codazzi equation (2.10), we get

− 2g(X,φY ) + 2g(φHX,HY )(4.9)

= (Xα)g(Y, U)− (Y α)g(X,U) + αg((φH +Hφ)X,Y ).

Similarly, putting Y = U into (4.9), we have

(4.10) Xα = βg(X,U),

where β = Uα. Combining (4.9) with (4.10) imply

(4.11) −2g(X,φY ) + 2g(φHX,HY ) = αg((φH +Hφ)X,Y ).

Differentiating (4.10) covariantly along M and using (2.8), we have

Y Xα = (Y β)g(X,U) + β{g(φHY,X) + g(∇Y X,U)}.

Taking the skew-symmetric part of the last equation and making use of (4.10),
we obtain

(Y β)g(X,U)− (Xβ)g(Y, U) + βg((φH +Hφ)Y,X) = 0

and putting Y = U into the last equation, we get

Xβ = (Uβ)g(X,U)

thus consequently we have

(4.12) β(φH +Hφ)X = 0.
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Therefore φH +Hφ = 0 on the open set S = {x ∈ M |β(x) 6= 0}. Owing to
the fact that α(φH −Hφ)X = 0, we have αHX = 0 on S, which gives

αg(φX, Y ) = 0

on S. Hence α = 0 on S and consequently we get β = 0 on S, which is
a contradiction. Thus we have β = 0 identically on M , so α is constant.
Therefore, if α = g(HU,U) 6= 0 at least one point of M , then we conclude
φH −Hφ = 0. �

Remark. If φH −Hφ = 0 and n > 1, then α 6= 0.

Indeed, if we set
V := ∇UU + (divU)U,

then we can see that

divV =
1

2
||φH −Hφ||2 + g(HU,U)(trH)− trH2 − 2(n− 1).

Since the commutativity condition such that φH −Hφ = 0 implies HU = αU ,
consequently we conclude V = 0. Thus, if α = 0, then

trH2 + 2(n− 1) = 0.

This yields n = 1, which is a contradiction.

Owing to Theorem 4.1, we have:

Theorem 4.2. Let M be a real hypersurface of a complex hyperbolic space

CHn. If (′∇V
′R)(Y ∗, U∗)X∗ = 0 and g(HU,U) 6= 0 at least one point of M ,

then φH = Hφ.

Proof. Since ′∇V U
∗ = (φU)∗ = 0, we get

(′∇V
′R)(Y ∗, U∗)X∗ = ′∇V (

′R(Y ∗, U∗)X∗)

− ′R(′∇V Y
∗, U∗)X∗ − ′R(Y ∗, U∗)′∇V X

∗,

which combined with the fact that (′∇V
′R)(Y ∗, U∗)X∗ = 0 implies

′∇V (
′R(Y ∗, U∗)X∗) = ′R(′∇V Y

∗, U∗)X∗ + ′R(Y ∗, U∗)′∇V X
∗.

Then from (4.3), the last equation reduces to
′R(Y ∗, U∗)X∗ = g(Y,X)∗U∗ − g(U,X)∗Y ∗(4.13)

+ g(HU,X)∗HY ∗ − g(HY,X)∗HU∗

+ {g(HY,X)∗ − g(Y, U)∗g(HU,X)∗}V,

which together with (2.3) gives
′∇V (

′R(Y ∗, U∗)X∗) = − g(X,U)∗(φY )∗ + g(HU,X)∗(φHY )∗(4.14)

− g(HY,X)∗(φHU)∗,

and by means of (4.3), the last equation (4.14) yields
′R(′∇V Y

∗, U∗)X∗ + ′R(Y ∗, U∗)′∇V X
∗(4.15)
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= − g(X,U)∗(φY )∗ + g(HU,X)∗(HφY )∗ − g(HφY,X)∗(HU)∗

+ g(HU, φX)∗(HY )∗ − g(HY, φX)∗(HU)∗

+ {g(HφY,X)∗ + g(HY, φX)∗ − g(Y, U)∗g(HU, φX)∗}V.

Comparing with vertical parts in (4.14) and (4.15) respectively, we get

(4.16) g(HφY,X) + g(HY, φX)− g(Y, U)g(HU, φX) = 0.

Putting X = U into (4.16), we get φHU=0, thus we have HU = αU , where
α = g(HU,U). Also comparing with horizontal parts in (4.14) and (4.15)
respectively, we get

g(HU,X)(φHY )− g(HY,X)(φHU)(4.17)

= g(HU, φX)(HY )− g(HY, φX)(HU)

+ g(HU,X)(HφY )− g(HφY,X)(HU).

Putting X = U into the above equation (4.17) and making use of the fact that
HU = αU , we obtain α(φH − Hφ)Y = 0. Owing to similar method as it in
the proof of Theorem 4.1, we conclude φH −Hφ = 0. �

From (2.4) and (3.6) it follows that
′∇Y ∗

′∇X∗V = (∇Y (φX))∗ + g(φY, φX)∗V,(4.18)
′∇V

′∇Y ∗X∗ = (φ(∇Y X))∗,(4.19)
′∇Y ∗

′∇V X
∗ = (∇Y (φX))∗ + g(φY, φX)∗V,(4.20)

′∇V
′∇X∗V = −X∗ + g(X,U)∗U∗,(4.21)

which together with (4.2) and the fact that fibre is totally geodesic imply
′R(Y ∗, X∗)V = ((∇Y φ)X)∗ − ((∇Xφ)Y )∗,(4.22)
′R(Y ∗, V )X∗ = g(X,U)∗(HY )∗ − g(HY,X)∗U∗(4.23)

+ g(X,Y )∗V − g(X,U)∗g(Y, U)∗V,
′R(Y ∗, V )V = Y ∗ − g(Y, U)∗U∗.(4.24)

Therefore we get:

Theorem 4.3. Let M be a real hypersurface of a complex hyperbolic space

CHn. If (′∇V
′R)(Y ∗, X∗)V = 0, then φH = Hφ.

Proof. Since ′∇V V = 0, we have

(′∇V
′R)(Y ∗, X∗)V = ′∇V (

′R(Y ∗, X∗)V )

− ′R(′∇V Y
∗, X∗)V − ′R(Y ∗, ′∇V X

∗)V,

which combined with the fact that (′∇V
′R)(Y ∗, U∗)X∗ = 0 implies

(4.25) ′∇V (
′R(Y ∗, X∗)V ) = ′R(′∇V Y

∗, X∗)V + ′R(Y ∗, ′∇V X
∗)V.

Because of (2.7) and (4.22), we obtain

(4.26) ′R(Y ∗, X∗)V = g(X,U)∗(HY )∗ − g(Y, U)∗(HX)∗,
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which together with (4.25) reduces to

(4.27) g(X,U)φHY − g(Y, U)φHX = g(X,U)HφY − g(Y, U)HφX.

Putting Y = U into (4.27) and taking inner product with U , we get φHU = 0.
Consequently from (4.27) it follows that (φH −Hφ)X = 0. �

Thus owing to Theorem 4.3, we have also:

Theorem 4.4. Let M be a real hypersurface of a complex hyperbolic space

CHn. If (′∇V
′R)(Y ∗, V )X∗ = 0, then φH = Hφ.

Proof. Since ′∇V V = 0, we get

(′∇V
′R)(Y ∗, V )X∗ = ′∇V (

′R(Y ∗, V )X∗)

− ′R(′∇V Y
∗, V )X∗ − ′R(Y ∗, V )′∇V X

∗,

which together with the fact that (′∇V
′R)(Y ∗, V )X∗ = 0 implies

(4.28) ′∇V (
′R(Y ∗, V )X∗) = ′R(′∇V Y

∗, V )X∗ + ′R(Y ∗, V )′∇V X
∗.

Using (4.23), we obtain

(4.29) ′∇V (
′R(Y ∗, V )X∗) = g(X,U)∗(φHY )∗.

Since

′R(′∇V Y
∗, V )X∗ + ′R(Y ∗, V )′∇V X

∗(4.30)

= g(X,U)∗(HφY )∗ − g(HφY,X)∗U∗ − g(HY, φX)∗U∗,

we get

g(X,U)φHY = g(X,U)(HφY )− g(HφY,X)U − g(HY, φX)U.

Putting X = Y = U into (4.30), we get φHU = 0, thus we have HU = αU ,
where α = g(HU,U). Also putting X = U into (4.30), consequently we get
(φH −Hφ)X = 0. �

Therefore similarly we have:

Theorem 4.5. Let M be a real hypersurface of a complex hyperbolic space

CHn. If (′∇Z∗
′R)(Y ∗, V )X∗ = 0, then φH = Hφ.

Proof. Since

(′∇Z∗

′R)(Y ∗, V )X∗ = ′∇Z∗(′R(Y ∗, V )X∗)

− ′R(′∇Z∗Y ∗, V )X∗ − ′R(Y ∗, ′∇Z∗V )X∗

− ′R(Y ∗, V )′∇Z∗X∗,

we have (′∇Z∗
′R)(Y ∗, V )X∗ = 0, which implies

′∇Z∗(′R(Y ∗, V )X∗)

= ′R(′∇Z∗Y ∗, V )X∗ + ′R(Y ∗, ′∇Z∗V )X∗ + ′R(Y ∗, V )(′∇Z∗X∗).
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Taking use of (3.6) and (4.23), we get

′∇Z∗(′R(Y ∗, V )X∗)(4.31)

= g(∇ZX,U)∗(HY )∗ + g(X,φHZ)∗(HY )∗ + g(X,U)∗(∇Z(HY ))∗

− g(∇ZX,HY )∗U∗ − g(X,∇Z(HZ))∗U∗ − g(X,HY )∗(φHZ)∗

+ g(X,Y )∗(φZ)∗ − g(X,U)∗g(Y, U)∗(φZ)∗

+ {g(X,U)∗g(φZ,HY )∗ + g(∇ZX,Y )∗ + g(X,∇ZY )∗

− g(∇ZX,U)∗g(Y, U)∗ − g(X,φHZ)∗g(Y, U)∗

− g(X,U)∗g(∇ZY, U)∗ − g(X,U)∗g(Y, φHZ)∗}V.

Taking account of (3.6) and (4.23) and the fact that ′R(·, ·) is skew symmetric,
we obtain

′R(′∇Z∗Y ∗, V )X∗ = g(X,U)∗(H(∇ZY ))∗ − g(X,H(∇ZY ))∗U∗(4.32)

+ {g(X,∇ZY )∗ − g(X,U)∗g(∇ZY, U)∗}V.

From (4.3) it follows that

′R(Y ∗, ′∇Z∗V )X∗ = g(Y,X)∗(φZ)∗ − g(φZ,X)∗Y ∗(4.33)

+ g(HφZ,X)∗(HY )∗ − g(HY,X)∗(HφZ)∗

− g(Y, U)∗g(HφZ,X)∗V.

By means of (3.6), (4.23) and (4.24), we obtain

′R(Y ∗, V )(′∇Z∗X∗) = g(∇ZX,U)∗(HY )∗ − g(∇ZX,HY )∗U∗(4.34)

+ g(φZ,X)∗Y ∗ − g(φZ,X)∗g(Y, U)∗U∗

+ {g(∇ZX,Y )∗ − g(∇ZX,U)∗g(Y, U)∗}V.

Thus from (4.32), (4.33) and (4.34), it follows that

′R(′∇Z∗Y ∗, V )X∗ + ′R(Y ∗, ′∇Z∗V )X∗ + ′R(Y ∗, V )(′∇Z∗X∗)(4.35)

= g(X,U)∗(H(∇ZY ))∗ − g(X,H(∇ZY ))∗U∗

+ {g(X,∇ZY )∗ − g(X,U)∗g(∇ZY, U)∗}V

+ g(Y,X)∗(φZ)∗ − g(φZ,X)∗Y ∗ + g(HφZ,X)∗(HY )∗

− g(HY,X)∗(HφZ)∗ − g(Y, U)∗g(HφZ,X)∗V

+ g(∇ZX,U)∗(HY )∗ − g(∇ZX,HY )∗U∗

+ g(φZ,X)∗Y ∗ − g(φZ,X)∗g(Y, U)∗U∗

+ {g(∇ZX,Y )∗ − g(∇ZX,U)∗g(Y, U)∗}V.

Comparing with vertical parts in (4.31) and (4.35) respectively, we get

g(X,U)g(φZ,HY )− g(X,φHZ)g(Y, U)− g(X,U)g(Y, φHZ)(4.36)

= − g(Y, U)g(HφZ,X).
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Putting X = U into (4.36), we have

(4.37) g(φZ,HY )− g(Y, φHZ) = −g(Y, U)g(HφZ,U).

Also putting Y = U into (4.36), we obtain φHU = 0, which together with
(4.37) reduces to φH −Hφ = 0. �

Finally owing to Theorem 4.5, we get:

Theorem 4.6. Let M be a real hypersurface of a complex hyperbolic space

CHn. If (′∇Z∗
′R)(V,X∗)V = 0, then φH = Hφ.

Proof. Since

(′∇Z∗

′R)(V,X∗)V = ′∇Z∗(′R(V,X∗)V )

− ′R(′∇Z∗V,X∗)V − ′R(V, ′∇Z∗X∗)V

− ′R(V,X∗)′∇Z∗V,

we have (′∇Z∗
′R)(Y ∗, V )X∗ = 0, which implies

′∇Z∗(′R(V,X∗)V ) = ′R(′∇Z∗V,X∗)V + ′R(V, ′∇Z∗X∗)V + ′R(V,X∗)(′∇Z∗V ).

From (3.6) and (4.24) it follows that

′∇Z∗(′R(V,X∗)V )(4.38)

= − (∇ZX)∗ + g(∇ZX,U)∗U∗ + g(X,φHZ)∗U∗

+ g(X,U)∗(φHZ)∗ + g(φX,Z)∗V.

By means of (3.6), (4.22), (4.23) and (4.24), we obtain

′R(′∇Z∗V,X∗)V + ′R(V, ′∇Z∗X∗)V + ′R(V,X∗)(′∇Z∗V )(4.39)

= g(X,U)∗(HφZ)∗ − (∇ZX)∗ + g(∇ZX,U)∗U∗

+ g(HX,φZ)∗U∗ + g(φX,Z)∗V.

Comparing with horizontal parts in (4.38) and (4.39) respectively, we get

(4.40) g(X,φHZ)U + g(X,U)φHZ = g(X,HφZ)U + g(X,U)HφZ.

Putting X = Z = U into (4.40), we get φHU = 0. Also putting X = U into
(4.40), we conclude φH −Hφ = 0. �
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