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UNIQUENESS OF ENTIRE FUNCTIONS CONCERNING
DIFFERENTIAL POLYNOMIALS

JIANG-TAO L1 AND PING L1

ABSTRACT. In this paper, we study the uniqueness of entire functions
concerning differential polynomials and deficient value. The results ex-
tend and improve Theorem 2 in Yi [13].

1. Introduction and main results

Let f be a nonconstant meromorphic function in the whole complex plane
C, we will use the standard notations of Nevanlinna’s value distribution the-
ory such as T(r, f), N(r, f), N(r, f), m(r, f) and so on, as found in [11]. In
particular, we denote by S(r, f) any function satisfying S(r, f) = o(T'(r, f)) as
r — 0o, possibly outside a set of r of finite linear measure. For a € C U {o0},
we set E(a, f) = {z|f(2) — a = 0,counting multiplicities} and E(a, f) =
{z] f(2) — a = 0,ignoring multiplicities} respectively.

Let f and g be two nonconstant meromorphic functions, we say that f and g

share the value a CM (IM) provided that E(a, f) = E(a, g)(E(a, f) = E(a, g)).
The quantity A(f) = lim w is called the order of f(z). Also
T—00

log
T m(r, fia) . _— N(T,ﬁ)
=B ey T

is called the deficiency of a with respect to f(z). If §(a,f) > 0, then the
complex number a is named a deficient value of f(z).

In 1976, Yang [8] posed the following question:

What can be said about the relationship between two nonconstant entire
functions f and g if f and g share the value 0 CM and f’ and ¢’ share the
value 1 CM?
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The above problem has been studied by K. Shibazaki [7], Yi [12, 13], Yang-
Yi [10], Hua [2], Muse-Reinders [6] and I. Lahiri [3]. And Yi [13] has proved
the following theorem.

Theorem 1.1 ([13, Theorem 2]). Let f and g be two nonconstant entire func-
tions and let k be a nonnegative integer. If f and g share the value 0 CM, f*)
and g*®) share the value 1 CM and 5(0, f) > %, then f = g unless fF).¢*) = 1.

Let h be a nonconstant meromorphic function. We denote by P(h) = h(*) +
arh® =Y 4 a,h*=2) ... 4 ap 1 + agh the differential polynomial of h, where
ai,as, ..., ar are finite complex numbers and k is a positive integer.

Remark 1.2. The following example shows that in Theorem 1.1 the functions
f® and g cannot be replaced by P(f) and P(g). Let f = 2e7% and
g =e 2. Then f and g share the value 0 CM, f” +2f" and g” + 2¢g’ share the
value 1 CM and 6(0, f) > %, but f # g and (f” +2f)(¢" +2¢') # 1.

In this paper, we shall prove the following general results which extend and
improve Theorem 1.1.

Theorem 1.3. Let f and g be two nonconstant entire functions. Suppose
that f and g share the value 0 CM, P(f) and P(g) share the value 1 CM and

8(0,f) > 3. If M(f) #1, then f = g unless P(f) - P(g) = 1.

Theorem 1.4. Let f and g be two nonconstant entire functions. Suppose f and
g share the value 0 CM, P(f) and P(g) share the value 1 IM and 6(0, f) > 2.
IfA(f) # 1, then f = g unless P(f) - P(g) = 1.

2. Some lemmas

Lemma 2.1 ([5]). Let f be a nonconstant meromorphic function and let k be
a nonnegative integer. Then

(1) T(r,P(f)) <T(r, f) +kN(r, f) + S(r, f).

Lemma 2.2. Suppose that f(z) is a nonconstant meromorphic function in the
complex plane and a(z) is a small function of f(2), that is, T(r,a) = S(r, f).
If f(2) is not a polynomial, then

1 1
@) N =) < TOPU) =T f)+ N =) + 5. )
and
B N gpr) < N )+ hN )+ S ).

Proof. By the Nevanlinna’s first fundamental theorem and the lemma of loga-
rithmic derivatives, we have

L) =, ——) + 8(r, )

T(r,f)—N(r,m Fa



UNIQUENESS RESULTS OF ENTIRE FUNCTIONS 95

1 P(f —a)

Sm(ﬁm)*’m(ra f—a )+ S(r, f)
1
=T(r, P(f)) *N(ﬁm) +S(r, f).
We get (2) by transposition. And we obtain (3) combined with (1) and (2),
which proves this lemma. (I

Next, we introduce some notations.

Let F' and G be two nonconstant meromorphic functions such that F and G
share the value 1 IM. We denote by Np,(r, 725 ) the reduced counting function
for zeros of both F' — 1 and G — 1 about which F' — 1 has lager multiplicity

than G—1, N 115) (r, 5-7) the counting function for common simple zeros of both

F—1land G—1,and N g (7, ﬁ) the reduced counting function for common
multiple zeros of both FF — 1 and G — 1. In the same way, we can define
Ng(r, ﬁ) ,N}S)(r, ﬁ) and N](;(r, ﬁ) Also we denote by Nl)(r, %) the
counting function for simple zeros of F', and N(Q(r, %) the reduced counting
function for multiple zeros of F.

Lemma 2.3. Let F and G be two nonconstant meromorphic functions such
that F and G share the value 1 IM. Let

(4) H=— - — +

If H#0, then
(5) T(r,F) < N(T,%)-l-?N(T,F)—I—N(T,é)+2NL(r,ﬁ)
+ON(r, G) + Ni(r, ——) + S(r, F) + S, G).

G-1

Proof. Let zyp be a common simple zero of F'— 1 and G — 1. By (4), we have
H(z9) =0 and m(r,H) = S(r, F) + S(r, G), then

1 1
Ny <N(r,—)<T(rH 1
E(T,Ffl)_ (T’H)— (Ta )+O()
and
1
(6) N3 (r, =) < N(r. H) + S(r. F) + 5(r. G).
By the Nevanlinna’s second fundamental theorem, we have
=, 1 - 1 _
< — _ —
(7) T(TvF)+T(TaG)—N(TaF)+N(T7F_1)+N(T7F) NO(TaF,)
- 1 - 1
S(r,F)4+ N(r, =)+ N(r, =——
+ (r’ )+ (T’G)—i_ (T’Gfl)

- 1
+N(7’, G) — No(T, a) +S(7’, G),
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where Ny(r,1/F") denotes the counting function corresponding to the zeros of
F’ that are not zeros of F and F — 1 and Ny(r,1/G’) denotes the counting
function corresponding to the zeros of G’ that are not zeros of G and G — 1.
Since F' and G share the value 1 IM, we get

- 1

_ b v 1 N
N(T,F—l)7NE(T’F—1)+NL(T7F—1)+NL(T7G—l)
+ NZ(r, =) TS F) +5(r.G)
— 1
=N(r,=——)+S(r, F)+ S(r,G).
G-1
Then
. 1 - 1 1) 1 - 1
(8) N(TvF_1)+N(T7G_1)*NE(TaF_ )+NL(T5F_1)
_ 2 1
+NL(T’G71)+NE(T’G71)
— 1
+N(r,m)+S(T,F)+S(r,G)
< NY v, (r. ——
_NE(raF_1)+NL(TaF_1)
+N(r,m)+S(T,F)+S(r,G)
< N (r, =) + Ny (r, ——)
- BV R "F—1

+T(r,G)+ S(r,F)+ S(r,G).
From (7) and (8), we obtain

(9) T F) < NG 3) + N F) + NG, ) + N, G) + NP r, =)
1

=) = Nolr, 55) — Nolr, ) + S(r, F) + 5(7,G).

+ Ni(r, 7

By (4), we get

_ 1 _ _ 1 —
(10)  N(r,H) < No(r, F) + N(r, F) 4+ No(r, 5) + N(r,G)
_ _ 1 1 1
+ NL(Ta ﬁ) + NL(Ta G — 1) + NO(Ta F) + No(r, @)
+S(r, F)+ S(r,G).
Combine (6), (9) and (10), we have
R _ o
(11) T(r,F) < N(r, F) + Neao(r, F) + 2N(r, F) + N(r, 5)
- 1 — - 1
+ Neao(r, 5) +2N(r,G) 4+ 2N (r, T 1)
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b NL(r, ——) + S(r, F) + S(r, G).

G-1
It is obvious that
(12) N(T,i)—i—N(Q(T,l)gN(T,l),
F F F
(13) NG %) + Nalr, =) < N0, =).
G G G
From (11), (12) and (13), we get (5), which completes the proof. O

Lemma 2.4 ([9]). Suppose f; (j =1,2,....m+1) and g; (j =1,2,...,m)
are entire functions satisfying the following conditions:

¢ E o) = fut)

o The order of f;(z) is less than the order of e (2 for1 <j<m+1,
1 <k <m; And furthermore, the order of f;(z) is less than the order
ofegl(z)_gk(z) form>2and1 <j<m+1,1<Lk<m,l#k.
Then f; =0 (j=1,2,...,m+1).

3. Proof of Theorem 1.4

We just prove Theorem 1.4, and the proof of Theorem 1.3 is similar. Next
we consider two cases.

Case 1. Assume that P(f), P(g) # ¢, where ¢ is a finite complex constant.

Since f and g share the value 0 CM and P(f) and P(g) share the value 1
IM, by Milloux’s basic result we have

_ 1 _ 1
T(r,f)gN(r,f)+N(r,?)+N(r,W)+S(r,f)
1 _
:N(T,§)+N(T,m)+S(T,f)
<T(r,g)+T(r,P(g)) + S(r, f).
By Lemma 2.1, we get
(14) T(r,f) < (k+2)T(r,g) +S(r, )+ S(r,g9).
Similarly we can get
(15) T(r,g) < (k+2)T(r,f)+S(r, )+ S(r,g).
Then
(16) S(T’f) = S(r,g).

Let F = P(f), G = P(g) and let H be defined by (4), then F and G share the
value 1 IM. If H # 0, then by Lemma 2.3 we have

1
F-1

(17) T(T,F)SN(T,%)+N(T,l)+2NL(T, )

G
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- 1
+NL(T,m) +S(T,F)+S(7’,G>

From (3), we obtain

_ 1 1 _
1 N, <N(r,—=)<N(r,=)+N(r,F F
( 8) L(T’F—l)_ (raF,)— (T’F)—i_ (T, )+S(T’ )’
_ 1 1 1 =
—) < —) < — .
Ni(r greg) < N0 ) < N, ) + N, @) 4 5(,6)
Substituting (18) into (17), we deduce that
1 1
(19) T(T,F)§3N(7’,F)+2N(T,5)+S(T,F)+S(T,G>.

By Lemma 2.2 and (19), we have

(20) T@PU»STmPu»—ﬂnﬁ+Nm§H4Nm§>

+ZWn§+smﬂ+smm.

Noting that f and g share the value 0 CM, by (16) and (20) w:
5N (r, %) + S(r, f), a contradiction to the condition §(0, f) > 3. Thus H = 0.
Solving this equation, we get
_AG+B
-~ CG+D
where A, B,C and D are finite complex constants. Next we consider three
subcases.

Subcase 1.1. Assume that AC # 0. From (21), we know that % is a Picard
exceptional value of F'. By the Nevanlinna’s second fundamental theorem, we
have

(22) T(r,F)SN(r,%)—i—N(r,Fi

(21) (AD — BC # 0),

)+ N(r,F)+ S(r, F)

Ql

:N(r,%)—i—S(r,F).

From (3) and (22), we get

D+ 501,

that is, T'(r, f) < N(r, %)+S(T, f), which contradicts the condition 6(0, f) > %.
Subcase 1.2. Assume that A % 0 and C' = 0. Then F = %G + %. If

B # 0, then N(r, ﬁ) = N(r, &). By the Nevanlinna’s second fundamental

theorem, we have

T(r,P(f)) <T(r, P(f)) = T(r, f) + N(r,

(23) T(r,F)SN(T,%)JrN(r,F%)JrN(r,F)wLS(T,F)
= Nr,2) + N(r, ) + 50, F).
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From Lemma 2.3 and (23), we obtain

(24) T(r,P(f)) <T(r,P(f)) =T(r, f) + N(r, 3)

1
f
+ NG, é) 4+ S(r, f) + S(r, g).

By (16) and (24), we have
T(r, f) < N(r, %) + N(r, é) + S(r, f) = 2N (r, %) + S(r, f),

a contradiction to the condition §(0, f) > %. Thus B = 0, that is, F' = %G.

If 1 is a Picard exceptional value of F', then % = 1. Otherwise, % is a Picard
exceptional value of F' that is different from 1, which contradicts the Deficiency
Theorem [11]. Thus F' = G. If 1 is not a Picard exceptional value of F', then
there is a complex number 2o such that F(z9) = G(z) = 1. Therefore, 4 = 1,
that is, FF = G.

Subcase 1.3. Assume that A = 0 and C' # 0. Proceeding as in the proof
of subcase 1.2 we can get F'- G = 1.

In conclusion, we know that F' = G unless F -G = 1. If - G = 1, that
is, P(f) - P(g) = 1, then the result of theorem 1.4 is true. If the former is

established, that is, P(f — g) = 0, solving this equation (see [1, 4]) we get

m
(25) f=g=> pj(2)e*?,

j=1
where m(< k) is a positive integer, o; (j = 1,...,m) are distinct complex
constants and p;(z) (j = 1,...,m) are polynomials. Next we prove that if

A(f) # 1, then f = g. We distinguish two cases below.

Case I. Assume that A(f) < 1. By (14) and (15), we know that A(f) =
A(g). Since f and g share the value 0 CM, we can get g = M2 where h(z) is
an entire function. Then

M) = A<§> < max{A), A} < 1.

Thus e?) = ¢, where ¢ is a finite complex constant. We obtain f = ¢qg,
then P(f) = coP(g). By P(f) = P(g), we can get ¢ = 1, that is, f = g.

Case II. Assume that A\(f) > 1. By the Weierstrass’s factorization theo-
rem, we have

f(z) =m(2)eh®), g(z) = m(2)e2?),
where 7(z) is canonical product formed with common zeros of f and g and
l1(z) and l2(z) are entire functions.
If Iy = Iy, then f = g. If Iy # I, since A(m) is equal to 7(f) which is the
exponent of convergence of zeros of f(z) and 7(f) < 7(f —g) < M f —g), by
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(25) we have
Am) <Af—g) = A(ij(z)e%‘z) <1.

Since A(f) = Mg) > 1 and f —g = (172 — 1)g, we can get that A(e!*(*)) > 1,
Me22(®)) > 1 and A(eh(3)=12(2)) > 1. By ﬁ(z)ell(z)fﬁ(z)elz(z):Z;nzl pj(z)e*?
and Lemma 2.4 we know that 377", p;(z)e®* = 0 and 7(z) = 0. Then f(2) =
0, a contradiction.

Case 2. Assume that P(f) = ¢, where ¢ is a finite complex constant.

We can know that f = ¢ + 371, g (2)ePi% where ¢; is finite complex
constant, ¢; (j = 1,2,...,m) are polynomials and 3; (j = 1,2,...,m) are
distinct finite complex constants. Since A(f) # 1, we get A(f) < 1. Then
f=ec+ Z;”Zl q;(z), that is, f is a polynomial. Suppose the degree of f is n.
Then

N(r, l) =nlogr and T(r,f)=nlogr+ O(1).

f
_ T N(Tv%)
Therefore, §(0, f) =1 Tlggo T f)

This completes the proof of Theorem 1.4.

=0< %, which is a contradiction.
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