Commun. Korean Math. Soc. **30** (2015), No. 2, pp. 93–101 http://dx.doi.org/10.4134/CKMS.2015.30.2.093

UNIQUENESS OF ENTIRE FUNCTIONS CONCERNING DIFFERENTIAL POLYNOMIALS

JIANG-TAO LI AND PING LI

ABSTRACT. In this paper, we study the uniqueness of entire functions concerning differential polynomials and deficient value. The results extend and improve Theorem 2 in Yi [13].

1. Introduction and main results

Let f be a nonconstant meromorphic function in the whole complex plane **C**, we will use the standard notations of Nevanlinna's value distribution theory such as T(r, f), N(r, f), $\bar{N}(r, f)$, m(r, f) and so on, as found in [11]. In particular, we denote by S(r, f) any function satisfying S(r, f) = o(T(r, f)) as $r \to \infty$, possibly outside a set of r of finite linear measure. For $a \in \mathbf{C} \cup \{\infty\}$, we set $E(a, f) = \{z \mid f(z) - a = 0, \text{ counting multiplicities}\}$ and $\bar{E}(a, f) = \{z \mid f(z) - a = 0, \text{ generic}\}$.

Let f and g be two nonconstant meromorphic functions, we say that f and g share the value a CM (IM) provided that $E(a, f) = E(a, g)(\bar{E}(a, f) = \bar{E}(a, g))$.

The quantity $\lambda(f) = \lim_{r \to \infty} \frac{\log^+ T(r, f)}{\log r}$ is called the order of f(z). Also

$$\delta(a,f) = \lim_{r \to \infty} \frac{m(r,\frac{1}{f-a})}{T(r,f)} = 1 - \lim_{r \to \infty} \frac{N(r,\frac{1}{f-a})}{T(r,f)}$$

is called the deficiency of a with respect to f(z). If $\delta(a, f) > 0$, then the complex number a is named a deficient value of f(z).

In 1976, Yang [8] posed the following question:

What can be said about the relationship between two nonconstant entire functions f and g if f and g share the value 0 CM and f' and g' share the value 1 CM?

O2015Korean Mathematical Society

Received February 13, 2015.

 $^{2010\} Mathematics\ Subject\ Classification.\ 30D35,\ 30D45.$

 $Key\ words\ and\ phrases.$ entire functions, differential polynomials, deficient value, uniqueness.

This work is supported by the National Natural Science Foundation of China (No. 11371384).

The above problem has been studied by K. Shibazaki [7], Yi [12, 13], Yang-Yi [10], Hua [2], Muse-Reinders [6] and I. Lahiri [3]. And Yi [13] has proved the following theorem.

Theorem 1.1 ([13, Theorem 2]). Let f and g be two nonconstant entire functions and let k be a nonnegative integer. If f and g share the value 0 CM, $f^{(k)}$ and $g^{(k)}$ share the value 1 CM and $\delta(0, f) > \frac{1}{2}$, then $f \equiv g$ unless $f^{(k)} \cdot g^{(k)} \equiv 1$.

Let *h* be a nonconstant meromorphic function. We denote by $P(h) = h^{(k)} + a_1 h^{(k-1)} + a_2 h^{(k-2)} + \dots + a_{k-1} h' + a_k h$ the differential polynomial of *h*, where a_1, a_2, \dots, a_k are finite complex numbers and *k* is a positive integer.

Remark 1.2. The following example shows that in Theorem 1.1 the functions $f^{(k)}$ and $g^{(k)}$ cannot be replaced by P(f) and P(g). Let $f = \frac{1}{2}e^{-2z}$ and $g = e^{-2z}$. Then f and g share the value 0 CM, f'' + 2f' and g'' + 2g' share the value 1 CM and $\delta(0, f) > \frac{1}{2}$, but $f \neq g$ and $(f'' + 2f')(g'' + 2g') \neq 1$.

In this paper, we shall prove the following general results which extend and improve Theorem 1.1.

Theorem 1.3. Let f and g be two nonconstant entire functions. Suppose that f and g share the value 0 CM, P(f) and P(g) share the value 1 CM and $\delta(0, f) > \frac{1}{2}$. If $\lambda(f) \neq 1$, then $f \equiv g$ unless $P(f) \cdot P(g) \equiv 1$.

Theorem 1.4. Let f and g be two nonconstant entire functions. Suppose f and g share the value 0 CM, P(f) and P(g) share the value 1 IM and $\delta(0, f) > \frac{4}{5}$. If $\lambda(f) \neq 1$, then $f \equiv g$ unless $P(f) \cdot P(g) \equiv 1$.

2. Some lemmas

Lemma 2.1 ([5]). Let f be a nonconstant meromorphic function and let k be a nonnegative integer. Then

(1)
$$T(r, P(f)) \le T(r, f) + k\bar{N}(r, f) + S(r, f).$$

Lemma 2.2. Suppose that f(z) is a nonconstant meromorphic function in the complex plane and a(z) is a small function of f(z), that is, T(r, a) = S(r, f). If f(z) is not a polynomial, then

(2)
$$N(r, \frac{1}{P(f) - P(a)}) \le T(r, P(f)) - T(r, f) + N(r, \frac{1}{f - a}) + S(r, f)$$

and

(3)
$$N(r, \frac{1}{P(f) - P(a)}) \le N(r, \frac{1}{f - a}) + k\bar{N}(r, f) + S(r, f).$$

Proof. By the Nevanlinna's first fundamental theorem and the lemma of logarithmic derivatives, we have

$$T(r, f) - N(r, \frac{1}{f-a}) = m(r, \frac{1}{f-a}) + S(r, f)$$

$$\leq m(r, \frac{1}{P(f) - P(a)}) + m(r, \frac{P(f-a)}{f-a}) + S(r, f)$$

= $T(r, P(f)) - N(r, \frac{1}{P(f) - P(a)}) + S(r, f).$

We get (2) by transposition. And we obtain (3) combined with (1) and (2), which proves this lemma. $\hfill \Box$

Next, we introduce some notations.

Let F and G be two nonconstant meromorphic functions such that F and G share the value 1 IM. We denote by $\bar{N}_L(r, \frac{1}{F-1})$ the reduced counting function for zeros of both F-1 and G-1 about which F-1 has lager multiplicity than $G-1, N_E^{1)}(r, \frac{1}{F-1})$ the counting function for common simple zeros of both F-1 and $\bar{N}_E^{(2)}(r, \frac{1}{F-1})$ the reduced counting function for common multiple zeros of both F-1 and $\bar{N}_E^{(2)}(r, \frac{1}{F-1})$ the reduced counting function for common multiple zeros of both F-1 and $\bar{N}_E^{(2)}(r, \frac{1}{F-1})$ the reduced counting function for common multiple zeros of both F-1 and $\bar{N}_E^{(2)}(r, \frac{1}{G-1})$. In the same way, we can define $\bar{N}_L(r, \frac{1}{G-1}), N_E^{1)}(r, \frac{1}{G-1})$ and $\bar{N}_E^{(2)}(r, \frac{1}{G-1})$. Also we denote by $N_{1)}(r, \frac{1}{F})$ the counting function for simple zeros of F, and $\bar{N}_{(2)}(r, \frac{1}{F})$ the reduced counting function for multiple zeros of F.

Lemma 2.3. Let F and G be two nonconstant meromorphic functions such that F and G share the value 1 IM. Let

(4)
$$H = \frac{F''}{F'} - \frac{2F'}{F-1} - \frac{G''}{G'} + \frac{2G'}{G-1}.$$

If $H \not\equiv 0$, then

(5)
$$T(r,F) \leq N(r,\frac{1}{F}) + 2\bar{N}(r,F) + N(r,\frac{1}{G}) + 2\bar{N}_L(r,\frac{1}{F-1}) + 2\bar{N}(r,G) + \bar{N}_L(r,\frac{1}{G-1}) + S(r,F) + S(r,G).$$

Proof. Let z_0 be a common simple zero of F - 1 and G - 1. By (4), we have $H(z_0) = 0$ and m(r, H) = S(r, F) + S(r, G), then

$$N_E^{(1)}(r, \frac{1}{F-1}) \le N(r, \frac{1}{H}) \le T(r, H) + O(1)$$

and

(6)
$$N_E^{(1)}(r, \frac{1}{F-1}) \le N(r, H) + S(r, F) + S(r, G).$$

By the Nevanlinna's second fundamental theorem, we have

(7)
$$T(r,F) + T(r,G) \leq \bar{N}(r,\frac{1}{F}) + \bar{N}(r,\frac{1}{F-1}) + \bar{N}(r,F) - N_0(r,\frac{1}{F'}) + S(r,F) + \bar{N}(r,\frac{1}{G}) + \bar{N}(r,\frac{1}{G-1}) + \bar{N}(r,G) - N_0(r,\frac{1}{G'}) + S(r,G),$$

where $N_0(r, 1/F')$ denotes the counting function corresponding to the zeros of F' that are not zeros of F and F-1 and $N_0(r, 1/G')$ denotes the counting function corresponding to the zeros of G' that are not zeros of G and G-1. Since F and G share the value 1 IM, we get

$$\bar{N}(r, \frac{1}{F-1}) = N_E^{(1)}(r, \frac{1}{F-1}) + \bar{N}_L(r, \frac{1}{F-1}) + \bar{N}_L(r, \frac{1}{G-1}) + \bar{N}_E^{(2)}(r, \frac{1}{G-1}) + S(r, F) + S(r, G) = \bar{N}(r, \frac{1}{G-1}) + S(r, F) + S(r, G).$$

Then

$$(8) \quad \bar{N}(r,\frac{1}{F-1}) + \bar{N}(r,\frac{1}{G-1}) = N_E^{(1)}(r,\frac{1}{F-1}) + \bar{N}_L(r,\frac{1}{F-1}) \\ + \bar{N}_L(r,\frac{1}{G-1}) + \bar{N}_E^{(2)}(r,\frac{1}{G-1}) \\ + \bar{N}(r,\frac{1}{G-1}) + S(r,F) + S(r,G) \\ \leq N_E^{(1)}(r,\frac{1}{F-1}) + \bar{N}_L(r,\frac{1}{F-1}) \\ + N(r,\frac{1}{G-1}) + S(r,F) + S(r,G) \\ \leq N_E^{(1)}(r,\frac{1}{F-1}) + \bar{N}_L(r,\frac{1}{F-1}) \\ + T(r,G) + S(r,F) + S(r,G).$$

From (7) and (8), we obtain

(9)
$$T(r,F) \leq \bar{N}(r,\frac{1}{F}) + \bar{N}(r,F) + \bar{N}(r,\frac{1}{G}) + \bar{N}(r,G) + N_E^{(1)}(r,\frac{1}{F-1}) + \bar{N}_L(r,\frac{1}{F-1}) - N_0(r,\frac{1}{F'}) - N_0(r,\frac{1}{G'}) + S(r,F) + S(r,G).$$

By (4), we get

(10)
$$N(r,H) \leq \bar{N}_{(2}(r,\frac{1}{F}) + \bar{N}(r,F) + \bar{N}_{(2}(r,\frac{1}{G}) + \bar{N}(r,G) \\ + \bar{N}_{L}(r,\frac{1}{F-1}) + \bar{N}_{L}(r,\frac{1}{G-1}) + N_{0}(r,\frac{1}{F'}) + N_{0}(r,\frac{1}{G'}) \\ + S(r,F) + S(r,G).$$

Combine (6), (9) and (10), we have

(11)
$$T(r,F) \leq \bar{N}(r,\frac{1}{F}) + \bar{N}_{(2}(r,\frac{1}{F}) + 2\bar{N}(r,F) + \bar{N}(r,\frac{1}{G}) + \bar{N}_{(2}(r,\frac{1}{G}) + 2\bar{N}(r,G) + 2\bar{N}_{L}(r,\frac{1}{F-1})$$

$$+ \bar{N}_L(r, \frac{1}{G-1}) + S(r, F) + S(r, G).$$

It is obvious that

(12)
$$\bar{N}(r,\frac{1}{F}) + \bar{N}_{(2}(r,\frac{1}{F}) \le N(r,\frac{1}{F}),$$

(13)
$$\bar{N}(r,\frac{1}{G}) + \bar{N}_{(2}(r,\frac{1}{G}) \le N(r,\frac{1}{G}).$$

From (11), (12) and (13), we get (5), which completes the proof.

Lemma 2.4 ([9]). Suppose f_j (j = 1, 2, ..., m + 1) and g_j (j = 1, 2, ..., m) are entire functions satisfying the following conditions:

- $\sum_{j=1}^{m} f_j(z) e^{g_j(z)} \equiv f_{m+1}(z);$
- The order of $f_j(z)$ is less than the order of $e^{g_k(z)}$ for $1 \le j \le m+1$, $1 \leq k \leq m$; And furthermore, the order of $f_j(z)$ is less than the order of $e^{g_l(z)-g_k(z)}$ for $m \ge 2$ and $1 \le j \le m+1, 1 \le l, k \le m, l \ne k$.

Then $f_j \equiv 0 \ (j = 1, 2, \dots, m+1).$

3. Proof of Theorem 1.4

We just prove Theorem 1.4, and the proof of Theorem 1.3 is similar. Next we consider two cases.

Case 1. Assume that $P(f), P(g) \neq c$, where c is a finite complex constant. Since f and g share the value 0 CM and P(f) and P(g) share the value 1 IM, by Milloux's basic result we have

$$T(r,f) \leq \bar{N}(r,f) + N(r,\frac{1}{f}) + \bar{N}(r,\frac{1}{P(f)-1}) + S(r,f)$$

= $N(r,\frac{1}{g}) + \bar{N}(r,\frac{1}{P(g)-1}) + S(r,f)$
 $\leq T(r,g) + T(r,P(g)) + S(r,f).$

By Lemma 2.1, we get

(14)
$$T(r,f) \le (k+2)T(r,g) + S(r,f) + S(r,g).$$

Similarly we can get

(15)
$$T(r,g) \le (k+2)T(r,f) + S(r,f) + S(r,g).$$

Then

(16)
$$S(r,f) = S(r,g).$$

Let F = P(f), G = P(g) and let H be defined by (4), then F and G share the value 1 IM. If $H \not\equiv 0$, then by Lemma 2.3 we have

(17)
$$T(r,F) \le N(r,\frac{1}{F}) + N(r,\frac{1}{G}) + 2\bar{N}_L(r,\frac{1}{F-1})$$

97

$$+ \bar{N}_L(r, \frac{1}{G-1}) + S(r, F) + S(r, G).$$

From (3), we obtain

(18)
$$\bar{N}_L(r, \frac{1}{F-1}) \le N(r, \frac{1}{F'}) \le N(r, \frac{1}{F}) + \bar{N}(r, F) + S(r, F),$$

 $\bar{N}_L(r, \frac{1}{G-1}) \le N(r, \frac{1}{G'}) \le N(r, \frac{1}{G}) + \bar{N}(r, G) + S(r, G).$

Substituting (18) into (17), we deduce that

(19)
$$T(r,F) \le 3N(r,\frac{1}{F}) + 2N(r,\frac{1}{G}) + S(r,F) + S(r,G).$$

By Lemma 2.2 and (19), we have

(20)
$$T(r, P(f)) \le T(r, P(f)) - T(r, f) + N(r, \frac{1}{f}) + 2N(r, \frac{1}{f}) + 2N(r, \frac{1}{f}) + 2N(r, \frac{1}{g}) + S(r, f) + S(r, g).$$

Noting that f and g share the value 0 CM, by (16) and (20) we get $T(r, f) \leq 5N(r, \frac{1}{f}) + S(r, f)$, a contradiction to the condition $\delta(0, f) > \frac{4}{5}$. Thus $H \equiv 0$. Solving this equation, we get

(21)
$$F = \frac{AG+B}{CG+D} \qquad (AD-BC \neq 0),$$

where A, B, C and D are finite complex constants. Next we consider three subcases.

Subcase 1.1. Assume that $AC \neq 0$. From (21), we know that $\frac{A}{C}$ is a Picard exceptional value of F. By the Nevanlinna's second fundamental theorem, we have

(22)
$$T(r,F) \le N(r,\frac{1}{F}) + N(r,\frac{1}{F-\frac{A}{C}}) + N(r,F) + S(r,F)$$
$$= N(r,\frac{1}{F}) + S(r,F).$$

From (3) and (22), we get

$$T(r, P(f)) \le T(r, P(f)) - T(r, f) + N(r, \frac{1}{f}) + S(r, f),$$

that is, $T(r, f) \leq N(r, \frac{1}{f}) + S(r, f)$, which contradicts the condition $\delta(0, f) > \frac{4}{5}$.

Subcase 1.2. Assume that $A \neq 0$ and C = 0. Then $F = \frac{A}{D}G + \frac{B}{D}$. If $B \neq 0$, then $N(r, \frac{1}{F-\frac{B}{D}}) = N(r, \frac{1}{G})$. By the Nevanlinna's second fundamental theorem, we have

(23)
$$T(r,F) \leq N(r,\frac{1}{F}) + N(r,\frac{1}{F-\frac{B}{D}}) + N(r,F) + S(r,F)$$
$$= N(r,\frac{1}{F}) + N(r,\frac{1}{G}) + S(r,F).$$

From Lemma 2.3 and (23), we obtain

(24)
$$T(r, P(f)) \le T(r, P(f)) - T(r, f) + N(r, \frac{1}{f}) + N(r, \frac{1}{g}) + S(r, f) + S(r, g).$$

By (16) and (24), we have

$$T(r,f) \le N(r,\frac{1}{f}) + N(r,\frac{1}{g}) + S(r,f) = 2N(r,\frac{1}{f}) + S(r,f),$$

a contradiction to the condition $\delta(0, f) > \frac{4}{5}$. Thus B = 0, that is, $F = \frac{A}{D}G$. If 1 is a Picard exceptional value of F, then $\frac{A}{D} = 1$. Otherwise, $\frac{A}{D}$ is a Picard exceptional value of F that is different from 1, which contradicts the Deficiency Theorem [11]. Thus $F \equiv G$. If 1 is not a Picard exceptional value of F, then there is a complex number z_0 such that $F(z_0) = G(z_0) = 1$. Therefore, $\frac{A}{D} = 1$, that is, $F \equiv G$.

Subcase 1.3. Assume that A = 0 and $C \neq 0$. Proceeding as in the proof of subcase 1.2 we can get $F \cdot G \equiv 1$.

In conclusion, we know that $F \equiv G$ unless $F \cdot G \equiv 1$. If $F \cdot G \equiv 1$, that is, $P(f) \cdot P(g) \equiv 1$, then the result of theorem 1.4 is true. If the former is established, that is, $P(f - g) \equiv 0$, solving this equation (see [1, 4]) we get

(25)
$$f-g = \sum_{j=1}^{m} p_j(z) e^{\alpha_j z},$$

where $m(\leq k)$ is a positive integer, α_j (j = 1, ..., m) are distinct complex constants and $p_j(z)$ (j = 1, ..., m) are polynomials. Next we prove that if $\lambda(f) \neq 1$, then $f \equiv g$. We distinguish two cases below.

Case I. Assume that $\lambda(f) < 1$. By (14) and (15), we know that $\lambda(f) = \lambda(g)$. Since f and g share the value 0 CM, we can get $\frac{f}{g} = e^{h(z)}$, where h(z) is an entire function. Then

$$\lambda(e^{h(z)}) = \lambda(\frac{f}{g}) \le \max\{\lambda(f), \ \lambda(\frac{1}{g})\} < 1.$$

Thus $e^{h(z)} \equiv c_0$, where c_0 is a finite complex constant. We obtain $f \equiv c_0 g$, then $P(f) \equiv c_0 P(g)$. By $P(f) \equiv P(g)$, we can get $c_0 = 1$, that is, $f \equiv g$.

Case II. Assume that $\lambda(f) > 1$. By the Weierstrass's factorization theorem, we have

$$f(z) = \pi(z)e^{l_1(z)}, \quad g(z) = \pi(z)e^{l_2(z)},$$

where $\pi(z)$ is canonical product formed with common zeros of f and g and $l_1(z)$ and $l_2(z)$ are entire functions.

If $l_1 \equiv l_2$, then $f \equiv g$. If $l_1 \neq l_2$, since $\lambda(\pi)$ is equal to $\tau(f)$ which is the exponent of convergence of zeros of f(z) and $\tau(f) \leq \tau(f-g) \leq \lambda(f-g)$, by

(25) we have

$$\lambda(\pi) \le \lambda(f-g) = \lambda(\sum_{j=1}^m p_j(z)e^{\alpha_j z}) \le 1.$$

Since $\lambda(f) = \lambda(g) > 1$ and $f - g = (e^{l_1 - l_2} - 1)g$, we can get that $\lambda(e^{l_1(z)}) > 1$, $\lambda(e^{l_2(z)}) > 1$ and $\lambda(e^{l_1(z) - l_2(z)}) > 1$. By $\pi(z)e^{l_1(z)} - \pi(z)e^{l_2(z)} = \sum_{j=1}^m p_j(z)e^{\alpha_j z}$. and Lemma 2.4 we know that $\sum_{j=1}^{m} p_j(z) e^{\alpha_j z} \equiv 0$ and $\pi(z) \equiv 0$. Then $f(z) \equiv$ 0, a contradiction.

Case 2. Assume that $P(f) \equiv c$, where c is a finite complex constant. We can know that $f \equiv c_1 + \sum_{j=1}^m q_j(z)e^{\beta_j z}$, where c_1 is finite complex constant, q_j (j = 1, 2, ..., m) are polynomials and β_j (j = 1, 2, ..., m) are distinct finite complex constants. Since $\lambda(f) \neq 1$, we get $\lambda(f) < 1$. Then $f \equiv c_1 + \sum_{j=1}^m q_j(z)$, that is, f is a polynomial. Suppose the degree of f is n. Then

$$N(r, \frac{1}{f}) = n \log r$$
 and $T(r, f) = n \log r + O(1)$.

Therefore, $\delta(0, f) = 1 - \overline{\lim_{r \to \infty} \frac{N(r, \frac{1}{f})}{T(r, f)}} = 0 < \frac{4}{5}$, which is a contradiction. This completes the proof of Theorem 1.4.

References

- [1] H. Herold, Differentialgleichungen im Komplexen, Vandenhoeck & Ruprecht, Gottingen, 1975
- [2] X. H. Hua, A unicity theorem for entire functions, Bull. Lond. Math. Soc. 22 (1990), no. 5, 457-462.
- [3] I. Lahiri, Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J. 44 (1997), no. 2, 147-156.
- [4]I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.
- [5] H. Milloux, Les fonctions meromorphes et leurs derivees, Hermann et Cie., Paris, 1940.
- [6] E. Mues and M. Reinders, On a question of C. C. Yang, Complex Var. Theory Appl. 34 (1997), no. 1-2, 171-179.
- K. Shibazaki, Unicity theorems for entire functions of finite order, Mem. Nat. Defense [7]Acad. (Japan) 21 (1981), no. 3, 67-71.
- [8] C. C. Yang, On two entire functions which together with their first derivatives have the same zeros, J. Math. Anal. Appl. 56 (1976), no. 1, 1-6.
- [9] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.
- _, On the unicity theorem of meromorphic functions with deficient value, Acta [10]Math. Sinica (Chin. Ser.) 37 (1994), no. 1, 62-72.
- [11] L. Yang, Value Distribution Theory and the New Researches, Science Press, Beijing, 1982
- [12] H. X. Yi, Uniqueness of meromorphic functions and a question of C. C. Yang, Complex Var. Theory Appl. 14 (1990), no. 1-4, 169-176.
- [13]_____, A question of C. C. Yang on the uniqueness of entire functions, Kodai Math. J. 13 (1990), no. 1, 39-46.

JIANG-TAO LI DEPARTMENT OF MATHEMATICS CHONGQING UNIVERSITY CHONGQING 401331, P. R. CHINA AND DEPARTMENT OF MATHEMATICS SHIHEZI UNIVERSITY SHIHEZI, XINJIANG 832003, P. R. CHINA *E-mail address*: ljt@sdu.edu.cn

PING LI DEPARTMENT OF MATHEMATICS CHONGQING UNIVERSITY CHONGQING 401331, P. R. CHINA *E-mail address:* sxxlp@sina.cn