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UNIQUENESS OF ENTIRE FUNCTIONS CONCERNING

DIFFERENTIAL POLYNOMIALS

Jiang-Tao Li and Ping Li

Abstract. In this paper, we study the uniqueness of entire functions
concerning differential polynomials and deficient value. The results ex-
tend and improve Theorem 2 in Yi [13].

1. Introduction and main results

Let f be a nonconstant meromorphic function in the whole complex plane
C, we will use the standard notations of Nevanlinna’s value distribution the-
ory such as T (r, f), N(r, f), N̄(r, f), m(r, f) and so on, as found in [11]. In
particular, we denote by S(r, f) any function satisfying S(r, f) = o(T (r, f)) as
r → ∞, possibly outside a set of r of finite linear measure. For a ∈ C ∪ {∞},
we set E(a, f) = {z | f(z) − a = 0, counting multiplicities} and Ē(a, f) =
{z | f(z)− a = 0, ignoring multiplicities} respectively.

Let f and g be two nonconstant meromorphic functions, we say that f and g
share the value a CM (IM) provided that E(a, f) = E(a, g)(Ē(a, f) = Ē(a, g)).

The quantity λ(f) = lim
r→∞

log+T (r,f)
log r

is called the order of f(z). Also

δ(a, f) = lim
r→∞

m(r, 1
f−a

)

T (r, f)
= 1− lim

r→∞

N(r, 1
f−a

)

T (r, f)

is called the deficiency of a with respect to f(z). If δ(a, f) > 0, then the
complex number a is named a deficient value of f(z).

In 1976, Yang [8] posed the following question:
What can be said about the relationship between two nonconstant entire

functions f and g if f and g share the value 0 CM and f ′ and g′ share the
value 1 CM?
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The above problem has been studied by K. Shibazaki [7], Yi [12, 13], Yang-
Yi [10], Hua [2], Muse-Reinders [6] and I. Lahiri [3]. And Yi [13] has proved
the following theorem.

Theorem 1.1 ([13, Theorem 2]). Let f and g be two nonconstant entire func-

tions and let k be a nonnegative integer. If f and g share the value 0 CM, f (k)

and g(k) share the value 1 CM and δ(0, f) > 1
2 , then f ≡ g unless f (k) ·g(k) ≡ 1.

Let h be a nonconstant meromorphic function. We denote by P (h) = h(k)+
a1h

(k−1)+a2h
(k−2)+ · · ·+ak−1h

′+akh the differential polynomial of h, where
a1, a2, . . . , ak are finite complex numbers and k is a positive integer.

Remark 1.2. The following example shows that in Theorem 1.1 the functions
f (k) and g(k) cannot be replaced by P (f) and P (g). Let f = 1

2e
−2z and

g = e−2z. Then f and g share the value 0 CM, f ′′ +2f ′ and g′′ +2g′ share the
value 1 CM and δ(0, f) > 1

2 , but f 6= g and (f ′′ + 2f ′)(g′′ + 2g′) 6= 1.

In this paper, we shall prove the following general results which extend and
improve Theorem 1.1.

Theorem 1.3. Let f and g be two nonconstant entire functions. Suppose

that f and g share the value 0 CM, P (f) and P (g) share the value 1 CM and

δ(0, f) > 1
2 . If λ(f) 6= 1, then f ≡ g unless P (f) · P (g) ≡ 1.

Theorem 1.4. Let f and g be two nonconstant entire functions. Suppose f and

g share the value 0 CM, P (f) and P (g) share the value 1 IM and δ(0, f) > 4
5 .

If λ(f) 6= 1, then f ≡ g unless P (f) · P (g) ≡ 1.

2. Some lemmas

Lemma 2.1 ([5]). Let f be a nonconstant meromorphic function and let k be

a nonnegative integer. Then

T (r, P (f)) ≤ T (r, f) + kN̄(r, f) + S(r, f).(1)

Lemma 2.2. Suppose that f(z) is a nonconstant meromorphic function in the

complex plane and a(z) is a small function of f(z), that is, T (r, a) = S(r, f).
If f(z) is not a polynomial, then

N(r,
1

P (f)− P (a)
) ≤ T (r, P (f))− T (r, f) +N(r,

1

f − a
) + S(r, f)(2)

and

N(r,
1

P (f)− P (a)
) ≤ N(r,

1

f − a
) + kN̄(r, f) + S(r, f).(3)

Proof. By the Nevanlinna’s first fundamental theorem and the lemma of loga-
rithmic derivatives, we have

T (r, f)−N(r,
1

f − a
) = m(r,

1

f − a
) + S(r, f)
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≤ m(r,
1

P (f)− P (a)
) +m(r,

P (f − a)

f − a
) + S(r, f)

= T (r, P (f))−N(r,
1

P (f)− P (a)
) + S(r, f).

We get (2) by transposition. And we obtain (3) combined with (1) and (2),
which proves this lemma. �

Next, we introduce some notations.
Let F and G be two nonconstant meromorphic functions such that F and G

share the value 1 IM. We denote by N̄L(r,
1

F−1 ) the reduced counting function
for zeros of both F − 1 and G − 1 about which F − 1 has lager multiplicity

than G−1, N
1)
E (r, 1

F−1 ) the counting function for common simple zeros of both

F − 1 and G− 1, and N̄
(2
E (r, 1

F−1 ) the reduced counting function for common
multiple zeros of both F − 1 and G − 1. In the same way, we can define

N̄L(r,
1

G−1) ,N
1)
E (r, 1

G−1) and N̄
(2
E (r, 1

G−1). Also we denote by N1)(r,
1
F
) the

counting function for simple zeros of F , and N̄(2(r,
1
F
) the reduced counting

function for multiple zeros of F .

Lemma 2.3. Let F and G be two nonconstant meromorphic functions such

that F and G share the value 1 IM. Let

H =
F ′′

F ′
−

2F ′

F − 1
−

G′′

G′
+

2G′

G− 1
.(4)

If H 6≡ 0, then

T (r, F ) ≤ N(r,
1

F
) + 2N̄(r, F ) +N(r,

1

G
) + 2N̄L(r,

1

F − 1
)(5)

+ 2N̄(r,G) + N̄L(r,
1

G− 1
) + S(r, F ) + S(r,G).

Proof. Let z0 be a common simple zero of F − 1 and G − 1. By (4), we have
H(z0) = 0 and m(r,H) = S(r, F ) + S(r,G), then

N
1)
E (r,

1

F − 1
) ≤ N(r,

1

H
) ≤ T (r,H) +O(1)

and

N
1)
E (r,

1

F − 1
) ≤ N(r,H) + S(r, F ) + S(r,G).(6)

By the Nevanlinna’s second fundamental theorem, we have

T (r, F ) + T (r,G) ≤ N̄(r,
1

F
) + N̄(r,

1

F − 1
) + N̄(r, F )−N0(r,

1

F ′
)(7)

+ S(r, F ) + N̄(r,
1

G
) + N̄(r,

1

G− 1
)

+ N̄(r,G)−N0(r,
1

G′
) + S(r,G),
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where N0(r, 1/F
′) denotes the counting function corresponding to the zeros of

F ′ that are not zeros of F and F − 1 and N0(r, 1/G
′) denotes the counting

function corresponding to the zeros of G′ that are not zeros of G and G − 1.
Since F and G share the value 1 IM, we get

N̄(r,
1

F − 1
) = N

1)
E (r,

1

F − 1
) + N̄L(r,

1

F − 1
) + N̄L(r,

1

G− 1
)

+ N̄
(2
E (r,

1

G− 1
) + S(r, F ) + S(r,G)

= N̄(r,
1

G− 1
) + S(r, F ) + S(r,G).

Then

N̄(r,
1

F − 1
) + N̄(r,

1

G− 1
) = N

1)
E (r,

1

F − 1
) + N̄L(r,

1

F − 1
)(8)

+ N̄L(r,
1

G− 1
) + N̄

(2
E (r,

1

G− 1
)

+ N̄(r,
1

G− 1
) + S(r, F ) + S(r,G)

≤ N
1)
E (r,

1

F − 1
) + N̄L(r,

1

F − 1
)

+N(r,
1

G− 1
) + S(r, F ) + S(r,G)

≤ N
1)
E (r,

1

F − 1
) + N̄L(r,

1

F − 1
)

+ T (r,G) + S(r, F ) + S(r,G).

From (7) and (8), we obtain

T (r, F ) ≤ N̄(r,
1

F
) + N̄(r, F ) + N̄(r,

1

G
) + N̄(r,G) +N

1)
E (r,

1

F − 1
)(9)

+ N̄L(r,
1

F − 1
)−N0(r,

1

F ′
)−N0(r,

1

G′
) + S(r, F ) + S(r,G).

By (4), we get

N(r,H) ≤ N̄(2(r,
1

F
) + N̄(r, F ) + N̄(2(r,

1

G
) + N̄(r,G)(10)

+ N̄L(r,
1

F − 1
) + N̄L(r,

1

G− 1
) +N0(r,

1

F ′
) +N0(r,

1

G′
)

+ S(r, F ) + S(r,G).

Combine (6), (9) and (10), we have

T (r, F ) ≤ N̄(r,
1

F
) + N̄(2(r,

1

F
) + 2N̄(r, F ) + N̄(r,

1

G
)(11)

+ N̄(2(r,
1

G
) + 2N̄(r,G) + 2N̄L(r,

1

F − 1
)
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+ N̄L(r,
1

G− 1
) + S(r, F ) + S(r,G).

It is obvious that

N̄(r,
1

F
) + N̄(2(r,

1

F
) ≤ N(r,

1

F
),(12)

N̄(r,
1

G
) + N̄(2(r,

1

G
) ≤ N(r,

1

G
).(13)

From (11), (12) and (13), we get (5), which completes the proof. �

Lemma 2.4 ([9]). Suppose fj (j = 1, 2, . . . ,m + 1) and gj (j = 1, 2, . . . ,m)
are entire functions satisfying the following conditions:

•
m∑
j=1

fj(z)e
gj(z) ≡ fm+1(z);

• The order of fj(z) is less than the order of egk(z) for 1 ≤ j ≤ m+ 1,
1 ≤ k ≤ m; And furthermore, the order of fj(z) is less than the order

of egl(z)−gk(z) for m ≥ 2 and 1 ≤ j ≤ m+ 1, 1 ≤ l, k ≤ m, l 6= k.

Then fj ≡ 0 (j = 1, 2, . . . ,m+ 1).

3. Proof of Theorem 1.4

We just prove Theorem 1.4, and the proof of Theorem 1.3 is similar. Next
we consider two cases.

Case 1. Assume that P (f), P (g) 6≡ c, where c is a finite complex constant.
Since f and g share the value 0 CM and P (f) and P (g) share the value 1

IM, by Milloux’s basic result we have

T (r, f) ≤ N̄(r, f) +N(r,
1

f
) + N̄(r,

1

P (f)− 1
) + S(r, f)

= N(r,
1

g
) + N̄(r,

1

P (g)− 1
) + S(r, f)

≤ T (r, g) + T (r, P (g)) + S(r, f).

By Lemma 2.1, we get

T (r, f) ≤ (k + 2)T (r, g) + S(r, f) + S(r, g).(14)

Similarly we can get

T (r, g) ≤ (k + 2)T (r, f) + S(r, f) + S(r, g).(15)

Then

S(r, f) = S(r, g).(16)

Let F = P (f), G = P (g) and let H be defined by (4), then F and G share the
value 1 IM. If H 6≡ 0, then by Lemma 2.3 we have

T (r, F ) ≤ N(r,
1

F
) +N(r,

1

G
) + 2N̄L(r,

1

F − 1
)(17)
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+ N̄L(r,
1

G− 1
) + S(r, F ) + S(r,G).

From (3), we obtain

N̄L(r,
1

F − 1
) ≤ N(r,

1

F ′
) ≤ N(r,

1

F
) + N̄(r, F ) + S(r, F ),(18)

N̄L(r,
1

G− 1
) ≤ N(r,

1

G′
) ≤ N(r,

1

G
) + N̄(r,G) + S(r,G).

Substituting (18) into (17), we deduce that

T (r, F ) ≤ 3N(r,
1

F
) + 2N(r,

1

G
) + S(r, F ) + S(r,G).(19)

By Lemma 2.2 and (19), we have

T (r, P (f)) ≤ T (r, P (f))− T (r, f) +N(r,
1

f
) + 2N(r,

1

f
)(20)

+ 2N(r,
1

g
) + S(r, f) + S(r, g).

Noting that f and g share the value 0 CM, by (16) and (20) we get T (r, f) ≤
5N(r, 1

f
) + S(r, f), a contradiction to the condition δ(0, f) > 4

5 . Thus H ≡ 0.

Solving this equation, we get

F =
AG+B

CG+D
(AD −BC 6= 0),(21)

where A,B,C and D are finite complex constants. Next we consider three
subcases.

Subcase 1.1. Assume that AC 6= 0. From (21), we know that A
C

is a Picard
exceptional value of F . By the Nevanlinna’s second fundamental theorem, we
have

T (r, F ) ≤ N(r,
1

F
) +N(r,

1

F − A
C

) +N(r, F ) + S(r, F )(22)

= N(r,
1

F
) + S(r, F ).

From (3) and (22), we get

T (r, P (f)) ≤ T (r, P (f))− T (r, f) +N(r,
1

f
) + S(r, f),

that is, T (r, f) ≤ N(r, 1
f
)+S(r, f), which contradicts the condition δ(0, f) > 4

5 .

Subcase 1.2. Assume that A 6= 0 and C = 0. Then F = A
D
G + B

D
. If

B 6= 0, then N(r, 1
F−

B
D

) = N(r, 1
G
). By the Nevanlinna’s second fundamental

theorem, we have

T (r, F ) ≤ N(r,
1

F
) +N(r,

1

F − B
D

) +N(r, F ) + S(r, F )(23)

= N(r,
1

F
) +N(r,

1

G
) + S(r, F ).
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From Lemma 2.3 and (23), we obtain

T (r, P (f)) ≤ T (r, P (f))− T (r, f) +N(r,
1

f
)(24)

+N(r,
1

g
) + S(r, f) + S(r, g).

By (16) and (24), we have

T (r, f) ≤ N(r,
1

f
) +N(r,

1

g
) + S(r, f) = 2N(r,

1

f
) + S(r, f),

a contradiction to the condition δ(0, f) > 4
5 . Thus B = 0, that is, F = A

D
G.

If 1 is a Picard exceptional value of F , then A
D

= 1. Otherwise, A
D

is a Picard
exceptional value of F that is different from 1, which contradicts the Deficiency
Theorem [11]. Thus F ≡ G. If 1 is not a Picard exceptional value of F , then
there is a complex number z0 such that F (z0) = G(z0) = 1. Therefore, A

D
= 1,

that is, F ≡ G.
Subcase 1.3. Assume that A = 0 and C 6= 0. Proceeding as in the proof

of subcase 1.2 we can get F ·G ≡ 1.
In conclusion, we know that F ≡ G unless F · G ≡ 1. If F · G ≡ 1, that

is, P (f) · P (g) ≡ 1, then the result of theorem 1.4 is true. If the former is
established, that is, P (f − g) ≡ 0, solving this equation (see [1, 4]) we get

f − g =

m∑

j=1

pj(z)e
αjz,(25)

where m(≤ k) is a positive integer, αj (j = 1, . . . ,m) are distinct complex
constants and pj(z) (j = 1, . . . ,m) are polynomials. Next we prove that if
λ(f) 6= 1, then f ≡ g. We distinguish two cases below.

Case I. Assume that λ(f) < 1. By (14) and (15), we know that λ(f) =

λ(g). Since f and g share the value 0 CM, we can get f
g
= eh(z), where h(z) is

an entire function. Then

λ(eh(z)) = λ(
f

g
) ≤ max{λ(f), λ(

1

g
)} < 1.

Thus eh(z) ≡ c0, where c0 is a finite complex constant. We obtain f ≡ c0g,
then P (f) ≡ c0P (g). By P (f) ≡ P (g), we can get c0 = 1, that is, f ≡ g.

Case II. Assume that λ(f) > 1. By the Weierstrass’s factorization theo-
rem, we have

f(z) = π(z)el1(z), g(z) = π(z)el2(z),

where π(z) is canonical product formed with common zeros of f and g and
l1(z) and l2(z) are entire functions.

If l1 ≡ l2, then f ≡ g. If l1 6≡ l2, since λ(π) is equal to τ(f) which is the
exponent of convergence of zeros of f(z) and τ(f) ≤ τ(f − g) ≤ λ(f − g), by
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(25) we have

λ(π) ≤ λ(f − g) = λ(

m∑

j=1

pj(z)e
αjz) ≤ 1.

Since λ(f) = λ(g) > 1 and f − g = (el1−l2 − 1)g, we can get that λ(el1(z)) > 1,
λ(el2(z)) > 1 and λ(el1(z)−l2(z)) > 1. By π(z)el1(z)−π(z)el2(z)=

∑m

j=1 pj(z)e
αjz

and Lemma 2.4 we know that
∑m

j=1 pj(z)e
αjz ≡ 0 and π(z) ≡ 0. Then f(z) ≡

0, a contradiction.
Case 2. Assume that P (f) ≡ c, where c is a finite complex constant.
We can know that f ≡ c1 +

∑m

j=1 qj(z)e
βjz, where c1 is finite complex

constant, qj (j = 1, 2, . . . ,m) are polynomials and βj (j = 1, 2, . . . ,m) are
distinct finite complex constants. Since λ(f) 6= 1, we get λ(f) < 1. Then
f ≡ c1 +

∑m

j=1 qj(z), that is, f is a polynomial. Suppose the degree of f is n.
Then

N(r,
1

f
) = n log r and T (r, f) = n log r +O(1).

Therefore, δ(0, f) = 1− lim
r→∞

N(r, 1
f
)

T (r,f) = 0 < 4
5 , which is a contradiction.

This completes the proof of Theorem 1.4.
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