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EXPLICIT FORMULA FOR COEFFICIENTS OF TODD

SERIES OF LATTICE CONES

Hi-joon Chae, Byungheup Jun, and Jungyun Lee

Abstract. Todd series are associated to maximal non-degenerate lattice
cones. The coefficients of Todd series of a particular class of lattice cones
are closely related to generalized Dedekind sums of higher dimension. We
generalize this construction and obtain an explicit formula for coefficients
of the Todd series. It turns out that every maximal non-degenerate lattice
cone, hence the associated Todd series can be obtained in this way.

1. Introduction

In [2, 3], we have defined the following generalized Dedekind sums of higher
dimension and considered their properties including integrality, equidistribu-
tion and reciprocity: for q ∈ Z>0, (a1, . . . , an) ∈ Zn and (i1, . . . , in) ∈ Zn

≥0,

(1)
∑

(k1,...,kn)

B̃i1

(
k1
q

)
B̃i2

(
k2
q

)
· · · B̃in

(
kn
q

)
,

where the summation is taken over the set of n-tuples (k1, . . . , kn) of non-
negative integers less that q such that a1k1 + · · · + ankn ≡ 0 mod q. The

B̃k(x) denotes the k-th periodic Bernoulli function, which is equal to the k-th

Bernoulli polynomial Bk(x) on [0, 1) (except B̃1(0) = 0 while B1(0) = −1/2).
For the origin, development and applications of these Dedekind sums, we

refer the introduction of [2, 3]. Let us just mention that the classical Dedekind
sum, corresponding to n = 2, (i1, i2) = (1, 1), appears in the modular transform
of the logarithm of the Dedekind η-function [5], and the case (i1, . . . , in) =
(1, . . . , 1) appears in the signature formula for some quotient manifolds [4, 6].
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We have called the sum obtained when periodic Bernoulli functions in (1) are
replaced by Bernoulli polynomials, the Todd coefficient in [2, 3]. The multi-
variable generating function of Todd coefficients for (i1, . . . , in) ∈ Zn

≥0 with

q, a1, . . . , an fixed is the Todd series of a lattice cone (hence the name).
A Todd series, whose precise definition is given in the next section, is de-

fined for a cone generated by n linearly independent lattice vectors in an n-
dimensional real vector space equipped with a lattice [1]. (Such a cone will be
called a maximal non-degenerate lattice cone in this paper.) And the Dedekind
sums (or Todd coefficients) for fixed q, a1, . . . , an correspond to a particular lat-
tice cone.

Our goal in this paper is to find a formula as explicit as (1) for coefficients
of Todd series of arbitrary (maximal non-degenerate) lattice cone.

First, we generalize the construction in [3] of the lattice cone whose Todd
series gives Dedekind sums of (1). For q ∈ Z>0 and A = (ai,j) ∈ Mn×m(Z).
we define an n-dimensional real vector space V (q, A), a lattice Γ(q, A) and a
maximal non-degenerate lattice cone C(q, A) in it. Then any maximal non-
degenerate lattice cone is isomorphic to one constructed in this way (Theorem
3.5).

The coefficients of the Todd series of C(q, A) are given in Theorem 4.1. The
coefficient of the term of multidegree (i1, . . . , in) is

(2) (−1)|i||N(q, A)|−1 qm−n+|i|

i1! · · · in!

∑

(k1,...,kn)

Bi1

(
k1
q

)
Bi2

(
k2
q

)
· · ·Bin

(
kn
q

)
,

where N(q, A) = {y ∈ (Z/qZ)m |Ay ≡ 0 mod q} is the null space of A mod q
and the sum is taken over the set of n-tuples k = (k1, . . . , kn) of non-negative
integers less than q such that a1,jk1 + a2,jk2 + · · · + an,jkn ≡ 0 mod q for
1 ≤ j ≤ m (i.e., the sum is over N(q, AT ) where AT is the transpose of A).
Also we have put |i| = i1 + · · ·+ in.

These results suggest the following definition (and the importance of the
study of) for (more general form of) generalized Dedekind sums of higher di-
mension. We hope to extend the results of [2, 3] to these Dedekind sums.

Definition. Let q ∈ Z>0, A = (ai,j) ∈ Mn×m(Z) and i = (i1, . . . , in) ∈ Zn
≥0.

The generalized Dedekind sum associated to (q, A), of dimension n and of degree
i is

d
i

(q, A) :=
∑

(k1,...,kn)

B̃i1

(
k1
q

)
B̃i2

(
k2
q

)
· · · B̃in

(
kn
q

)
,

where the sum is taken over the same set as in (2).

A word on notations. Vector notations simplify formulas greatly: for exam-
ple, for k = (k1, . . . , kn), i = (i1, . . . , in), x = (x1, . . . , xn), we put

q|i|

i!
B
i

(k) xi =
qi1+···+in

i1! · · · in!
Bi1(k1) · · ·Bin(kn) x

i1
1 · · ·xin

n .
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2. Todd series of lattice cones

A lattice Γ in an n-dimensional real vector space V is a free abelian group of
rank n which generates the vector space over R. In other words, a lattice is the
additive subgroup generated by a basis of the vector space. We may regard Γ
as giving a “Z-structure” on V . If we choose a basis for Γ, then the pair (V,Γ)
is isomorphic to (Rn,Zn) in an obvious sense.

A cone C = Cone(v1, . . . , vn) is an ordered n-tuple of vectors v1, . . . , vn ∈ V .
It is its underlying space |C| := R≥0v1 + · · ·+R≥0vn which is more commonly
called a cone. It is called a simplicial cone if its underlying space (except the
origin) is contained in a half space, i.e., if there exists v∗ 6= 0 ∈ V ∗ such that
v∗(vi) > 0 for i = 1, . . . , n. It is said to be non-degenerate if v1, . . . , vn are
linearly independent. Finally, it is called a lattice cone if v1, . . . , vn ∈ Γ.

Definition. Let C = Cone(v1, . . . , vn) be a non-degenerate (hence simplicial)
lattice cone in (V,Γ) with n = dimV . The Todd series of C is defined by

(3) ToddC(x) :=
∑

γ∈Γ/ΛC

n∏

k=1

xk

1− e2πi〈v
∗
k
,γ〉e−xk

,

where ΛC := Zv1 + · · · + Zvn and {v∗1 , . . . , v
∗
n} is the basis for V ∗ dual to

{v1, . . . , vn}. Here and in the rest of the paper, x1, . . . , xn are variables with
x = (x1, . . . , xn).

It is most convenient to view these variables x1, . . . , xn as coordinates on V
with respect to the basis {v1, . . . , vn}. Then ToddC is a meromorphic function
on VC := C ⊗ V which is analytic in a neighborhood of the origin. As such,
it admits a power series expansion around the origin. We are most interested
in the coefficients of this power series. The Todd series of a degenerate lattice
cone is defined to be zero.

Expanding the denominators in (3) formally and summing over γ, we obtain

(4) ToddC(x) = |Γ/ΛC | x1x2 · · ·xn

∑

v∗∈|C∗|∩Γ∗

e−
∑

n
k=1

〈v∗,vk〉xk ,

where Γ∗ = Hom(Γ,Z) is the lattice in V ∗ dual to Γ and |C∗| =
∑n

k=1 R≥0v
∗
k is

the underlying space of the dual cone C∗ = Cone(v∗1 , v
∗
2 , . . . , v

∗
n). This formal

sum converges if all xk > 0 (i.e., it converges inside |C|).

3. Construction of maximal non-degenerate lattice cones

We say a non-degenerate lattice cone C = Cone(u1, . . . , un) in (V,Γ) is
maximal if n = dimV . So Todd series of the last section are associated to
such cones. In this section, we give a construction which produces all maximal
non-degenerate lattice cones up to isomorphism. Roughly speaking, we take a
quotient of a standard cone in (Rm,Zm).

The image of a lattice in a quotient vector space is again a lattice if and
only if the kernel is “defined over Q”. More precisely, we have the following.
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Proposition 3.1. Suppose (V,Γ) is a pair of a finite dimensional real vector

space and a lattice in it. Let W be a subspace of V and π : V → V/W be the

canonical map. Then the image π(Γ) of Γ is a lattice in V/W if and only if

rank(Γ ∩W ) = dimW .

Proof. Since π(Γ) is a free abelian group which generates V/W over R, it is
enough to show that rankπ(Γ) = dim V/W if and only if rank(Γ∩W ) = dimW .
Since π(Γ) is free abelian, the short exact sequence of abelian groups

0 → Γ ∩W → Γ → π(Γ) → 0

splits. Thus we have Γ ∼= (Γ ∩W ) ⊕ π(Γ) and rankπ(Γ) = rankΓ− rank(Γ ∩
W ). �

Remark 3.2. A subspace W of V satisfies rank(Γ ∩W ) = dimW if and only if
it is generated (over R) by a set of lattice vectors.

Let us say a non-degenerate lattice cone C = Cone(v1, . . . , vn) in (V,Γ) is ad-
missible if v1, . . . , vn ∈ Γ can be extended to a basis for Γ. An admissible lattice
cone C = Cone(v1, . . . , vn) in (V,Γ) is isomorphic to the cone Cone(e1, . . . , en)
in (Rn+m,Zn+m) in an obvious sense where n+m = dimV and {e1, . . . , en+m}
is the standard basis for Rn+m. Let us call the last cone a standard admis-
sible cone. It is easy to see that any lattice cone is the image of a standard
admissible cone. More precisely, we have the following.

Proposition 3.3. Let C = Cone(u1, . . . , un) be a lattice cone in (V,Γ). Then

there exists a surjective map π : (Rn+m,Zn+m) → (V,Γ) such that C is the

image of Cone(e1, . . . , en). In other words, there exists a surjective linear map

π : Rn+m → V with Γ = π(Zn+m) such that π(ei) = ui for i = 1, . . . , n.

Proof. Extend {u1, . . . , un} to a set {u1, . . . , un+m} of generators for Γ. Let
π : Rn+m → V be the linear map given by ei 7→ ui for i = 1, . . . , n+m. �

Remark 3.4. We can choose m such that m ≤ rankΓ = dimV .

Suppose C = Cone(u1, . . . , un) is a maximal non-degenerate lattice cone
in (V,Γ). Extend {u1, . . . , un} to a set {u1, . . . , un+m} of generators for Γ.
We claim that there exist q ∈ Z>0 and A = (ai,j) ∈ Mn×m(Z) such that
qun+j =

∑n
i=1 ai,jui for j = 1, . . . ,m. Really, since {u1, . . . , un} is a basis for

the vector space V , un+1, . . . , un+m are linear combinations of u1, . . . , un. And
since they are lattice vectors, these coefficients belong to Q. Conversely, we
can reconstruct (V,Γ) and the cone C from these q and A = (ai,j) as follows.

Let q ∈ Z>0 and A = (ai,j) ∈ Mn×m(Z). Let v1, . . . , vn+m be column
vectors of the following matrix, which are lattice vectors in (Rn+m,Zn+m) :

(5)

(
1n A

0m×n q1m

)
,

where 1 and 0 denote the identity and the zero matrices of suitable size, re-
spectively. Let W be the subspace of Rn+m generated by vn+1, . . . , vn+m.
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Then Γ(q, A) = π(Zn+m) is a lattice in V (q, A) = Rn+m/W by Remark
3.2 where π : Rn+m → Rn+m/W is the canonical map. And C(q, A) =
Cone(π(v1), . . . , π(vn)) is a maximal non-degenerate lattice cone in (V (q, A),
Γ(q, A)). It is clear that if (q, A) is obtained from a given maximal non-
degenerate lattice cone C in (V,Γ) as in the last paragraph, then the linear
map Rn+m → V given by ei 7→ ui (i = 1, . . . , n+m) induces an isomorphism
of triples (V (q, A),Γ(q, A), C(q, A)) and (V,Γ, C). Summing up, we have the
following.

Theorem 3.5. Let q ∈ Z>0 and A = (ai,j) ∈ Mn×m(Z). The construction

above produces a maximal non-degenerate lattice cone C(q, A) in a vector space

(V (q, A),Γ(q, A)) equipped with a lattice. Conversely, for any maximal non-

degenerate lattice cone C in a vector space (V,Γ) equipped with a lattice, there

exists (q, A) such that the triple (V,Γ, C) is isomorphic to (V (q, A), Γ(q, A),
C(q, A)).

4. Explicit formula for coefficients of Todd series

We give an explicit formula for coefficients of the Todd series of arbitrary
maximal non-degenerate lattice cone. By Theorem 3.5, it is enough to consider
C(q, A) of the last section.

Theorem 4.1. Let q ∈ Z>0 and A = (ai,j) ∈ Mn×m(Z). Let C = C(q, A)
be the maximal non-degenerate lattice cone in (V,Γ) = (V (q, A),Γ(q, A)) con-

structed in the last section. Then for i = (i1, . . . , in) ∈ Zn
≥0, the coefficient of

x

i in the Todd series ToddC(x) of C is

(−1)|i||N(q, A)|−1 qm−n+|i|

i!

∑

k

B
i

(q−1
k),

where N(q, A) = {y ∈ (Z/qZ)m |Ay ≡ 0 mod q} is the null space of A mod q
and the sum is over the set of n-tuples k = (k1, . . . , kn) of non-negative integers

less than q such that a1,jk1 + a2,jk2 + · · ·+ an,jkn ≡ 0 mod q for 1 ≤ j ≤ m
(i.e., the sum is over N(q, AT ) where AT is the transpose of A).

Proof. When m = 1, this is proved in [3]. We keep the notations of the last
section. In particular, v1, . . . , vn+m are column vectors of (5), W is the span
of vn+1, . . . , vn+m and C = Cone(u1, . . . , un) where ui is the image of vi (i =
1, . . . , n). Let V0 = Rn+m and Γ0 = Zn+m. We can identify the dual space
V ∗ with the subspace {v∗ ∈ V ∗

0 | v∗ ≡ 0 on W} of V ∗
0 and the dual lattice

Γ∗ = Hom(Γ,Z) with V ∗ ∩ Γ∗
0. Let {v

∗
1 , . . . , v

∗
n+m} be the basis for V ∗

0 dual to
{v1, . . . , vn+m} and similarly, let {u∗

1, . . . , u
∗
n} be the dual basis for V ∗. Under

our identification V ∗ ⊂ V ∗
0 , we have u∗

i = v∗i for i = 1, . . . , n. Consider the
expansion of ToddC(x) given in (4) :

(6) ToddC(x) = |Γ/ΛC | x1x2 · · ·xn

∑

v∗∈|C∗|∩Γ∗

e−
∑n

j=1
〈v∗,uj〉xj .
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The lattice vectors in the underlying space |C∗| of C∗ = Cone(u∗
1, . . . , u

∗
n) can

be described as follows. First, note v∗1 , . . . , v
∗
n are row vectors of the following

matrix, the inverse of (5):
(

In −q−1A
0m×n q−1Im

)
.

Hence qu∗
1 = qv∗1 , . . . , qu

∗
n = qv∗n are lattice vectors and we have

|C∗| ∩Γ∗ = {u∗ + i1qu
∗
1 + i2qu

∗
2 + · · ·+ inqu

∗
n |u

∗ ∈ P ∩Γ∗, (i1, . . . , in) ∈ Zn
≥0},

where P = {t1qu
∗
1+ t2qu

∗
2+ · · ·+ tnqu

∗
n | 0 ≤ t1, . . . , tn < 1} is the fundamental

parallelepiped for the lattice generated by {qu∗
1, . . . , qu

∗
n} in V ∗. Then it is easy

to see that u∗ = t1qu
∗
1 + t2qu

∗
2 + · · ·+ tnqu

∗
n ∈ P is a lattice vector if and only

if (t1, . . . , tn) = (k1/q, . . . , kn/q) with (k1, . . . , kn) as in the statement of the
theorem. Now fix such k, i.e., a lattice vector u∗ = k1u

∗
1+k2u

∗
2+· · ·+knu

∗
n ∈ P∩

Γ∗ and consider the partial sum in (6) over v∗ = u∗+i1qu
∗
1+i2qu

∗
2+ · · ·+inqu

∗
n

with (i1, . . . , in) ∈ Zn
≥0:

x1x2 · · ·xn

∑

(i1,...,in)∈Zn
≥0

e−
∑n

j=1
〈u∗+i1qu

∗
1
+i2qu

∗
2
+···+inqu

∗
n,uj〉xj

=

n∏

j=1

xj

∞∑

ij=0

e−(kj+qij)xj

=

n∏

j=1

(−1)ij

q

∞∑

ij=o

1

ij !
Bij

(
kj
q

)
(qxj)

ij

=
∑

i∈Zn
≥0

(−1)|i|q−n+|i|

i!
B
i

(q−1
k)xi.

It remains to prove |Γ/ΛC | = qm|N(q, A)|−1. Consider the surjection Γ0/Λ0

→ Γ/ΛC where Λ0 is the subgroup generated by v1, . . . , vn+m. The kernel
of this map is

∑n
j=1 Zej + W ∩ Γ0 mod Λ0. It is isomorphic to πm(W ∩

Γ0)/πm(Λ0) = πm(W ∩ Γ0)/qZ
m where πm denotes the projection onto the

last m coordinates. For y ∈ Rm, we have y1vn+1 + · · · + ymvn+m is a lattice
vector if and only if both qy and Ay are lattice vectors, i.e., if and only if
qy ∈ Zm such that Aqy ≡ 0 mod q. Since πm(y1vn+1 + · · ·+ ymvn+m) = qy,
the kernel of Γ0/Λ0 → Γ/ΛC is isomorphic to N(q, A). This completes the
proof since |Γ0/Λ0| = qm. �
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