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MINIMUM RANK OF THE LINE GRAPH OF CORONA
Cn o Kt

BOKHEE IM AND HWA-YOUNG LEE

ABSTRACT. The minimum rank mr(G) of a simple graph G is defined
to be the smallest possible rank over all symmetric real matrices whose
(4, j)-th entry (for ¢ # j) is nonzero whenever {3, j} is an edge in G and is
zero otherwise. The corona Cy, o K; is obtained by joining all the vertices
of the complete graph K: to each n vertex of the cycle C,,. For any t,
we obtain an upper bound of zero forcing number of L(C), o K¢), the line
graph of C), o K¢, and get some bounds of mr(L(Cy, o Kt)). Specially for
t = 1,2, we have calculated mr(L(Cy, o K¢)) by the cut-vertex reduction
method.

1. Introduction and preliminaries

Let S,, denote the set of real symmetric n x n matrices. A graph G = (V, E)
means a simple undirected graph (an edge is a two-element subset of vertices).
For A = (a;;) € Sy, the graph of A, denoted G(A), is the graph with vertices
{1,...,n} and edges {{3,j}|a;; # 0 and i # j}. Note that the diagonal of A
is ignored in determining G(A). The set of symmetric matrices described by G
is S(G) ={A € S, : G(A) = G}. The minimum rank of the graph G is

mr(G) = min{rank A: A € S(G)},
and the mazimum nullity of the graph G is
M(G) = max{null(4) : A€ S(G)}.

A graph G’ = (V',E’) is a subgraph of the graph G = (V. E) if V! C V,
E’' C E. The subgraph G[R] of G = (V, E) induced by R C V is the subgraph
with vertex set R and edge set {{i,j} € E|i,j € R}.

Given a graph G, its line graph L(G) is a graph for which each vertex of
L(G) represents an edge of G and two vertices of L(G) are adjacent if and only
if their corresponding edges share a common endpoint (“are adjacent ”) in G.
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A complete graph is a graph K, = ({v1,...,v,}, E) such that E = {{v;,v;} :
1<i<j<n}

A subgraph G’ of a graph G is a clique if G’ has an edge between every
pair of vertices of G’ (i.e., G is isomorphic to Kg/|). A set of subgraphs of
G, each of which is a clique and every edge of G is contained in at least one
of these cliques, is called a clique covering of G. The clique covering number
of G, denoted by cc(G), is the smallest cardinality of a clique covering of G
among all clique covering of G. The following observation is well known and
straightforward.

Observation 1.1 ([4]).
(1) mr(G) + M(G) = |G|.
(2) If G’ is an induced subgraph of G, then mr(G') < mr(QG).
(3) [6] If G’ is obtained from G by deleting a single vertex and each incident
edge, then mr(G') < mr(G) < mr(G’) + 2.
(4) If G is a graph, mr(G) < cc(G).

Theorem 1.2 ([1]).
(1) mr(L(K,))=n—2.
(2) If a graph G has n > 2 vertices and contains a Hamiltonian path, then
mr(L(G)) =n—2.

A vertex v of a connected graph G is a cut-verter if G—v disconnected. More
generally, v is a cut-vertex of a graph G if v is a cut-vertex of a component of
G. The rank-spread of G at vertex v is r,(G) = mr(G) — mr(G — v). As noted
in Observation 1.1(3), for any vertex v of G, we have 0 < r,(G) < 2.

Theorem 1.3 ([3, 5](cut-vertex reduction)). If G has a cut-vertez, the problem
of computing the minimum rank of G can be reduced to computing minimum
ranks of certain subgraphs. Specially, let v be a cut-vertex of G. For i =
1,...,h, let W; CV(QG) be the vertices of the i-th component of G — v and let
G; be the subgraph induced by {v} UW;. Then

h
ro(G) = min{z ro(Gi), 2}
1
and thus

h h
mr(G) = Zmr(G’i —v) + min{Zn,(Gi), 2}.
1 1

Let G be a graph for which each vertex colored either white or black. Vertices
change color according to the color-change rule: if u is a black vertex and
exactly one neighbor w of u is white, then change the color of w to black.
When the color-change rule is applied to u to change the color of w, we say
u forces w and write v — w. Given a coloring of G, the derived set is the
set of black vertices obtained by applying the color-change rule until no more
color-changes are possible. The set Z is said to be a zero forcing set of G if
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all vertices of G will be turned black after finitely many applications of the
color-change rule. The zero forcing number Z(G) is the minimum of |Z| over
all zero forcing sets Z C V(G).

Theorem 1.4 ([1]). For any graph G, M(G) < Z(G).

In Theorem 2.2, we calculate the minimum rank of L(C,, 0 K;) for t = 1,2 by
the cut-vertex reduction method and Lemma 2.1. For the case of ¢ greater than
or equal to 3, the cut-vertex reduction method is not suitable, since L(C,,0K}) is
complicated. So we obtain the upper bound of zero forcing number of L(C),0K})
in Theorem 2.4, which is heavily used to obtain the lower bound of minimum
rank of L(C), o K;) in Theorem 2.5.

2. Minimum rank of the line graph of corona C,, o K;

The corona of G with H, denoted G o H, is the graph of order |G||H| + |G|
obtained by taking one copy of G and |G| copies of H, and joining all the
vertices in the i-th copy of H to the i-th vertex of G. An n-ciclo of G with an
edge e, denoted C,,(G,e), is constructed from an n-cycle C,, and n copies of G
by identifying each edge of C,, with the edge e in one copy of G. If a symbol
for the graph identifies a specific edge, or if G is edge transitive (so it is not
necessary to specify edge e), then the notation C,,(G) is used. A vertex on C,,
is called a cycle vertez [2].

Lemma 2.1. mr(L(P; o K3)) = 4.

Proof. Since P, o K5 contains a Hamiltonian path as depicted in Figure 1, we
have

mr(L(Pyo Ks)) =|Pao Kol —2=4

by Theorem 1.2(2). O
L .d__..
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F1GURE 1. The graph P o K5 and its line graph.

We remark that each numbering of vertex ¢ in Figure 3 and Figure 4 will be
denoted by v; in the proof of the following theorem to avoid a confusion.

Theorem 2.2. mr(L(C, o K;)) = tn, where t = 1,2.
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FIGURE 2. The graph C5 o K; and its line graph.
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FIGURE 4. The graph G® := L(C5 o K3) — vao.

Proof. (Case 1) t = 1: See Figure 2 for the case of n = 5. The line graph of C,, 0
K, has an induced subgraph P, 1. So we get mr(P,41) = n < mr(L(C, 0 K7))



MINIMUM RANK OF THE LINE GRAPH OF CORONA C,, o K; 69

by Observation 1.1(2). Moreover, we note that the clique covering number of
L(C,, o K7) is n. Hence by Observation 1.1(4) we now have the result.

(Case 2) t = 2: By Observation 1.1(4), mr(L(C), 0 K3)) < ce(L(Cp 0 K3)) =
2n. And by Observation 1.1(2), it is enough to show that the minimum rank
of the induced subgraph L(C,, o K3) — v4, of L(C,, o K») is precisely 2n.

For our convenience, we denote L(C,, o K3) — vg, by G™. Let us take the
vertex v4n—4 as a cut-vertex, then we have two induced subgraphs G} :=
G”[{vl, V2,. .. ,U4n_4}] and GS = Gn[{’U4n_4, Von—3, Van—2, U4n_1}]. By cut-
vertex reduction method of Theorem 1.3, we have mr(G™) is precisely mr(G} —
Vgn—a) +mr(GY — v _4)+min{2, 7, (GF)+7,, ., (GH)}. By G ™% we denote
G"[{v1,v2,...,V4(n—i—1)}] and by G5~ we denote G [{va(n—i—1)> Va(n—i—1)+1,
Vs(n—i—1)42> Va(n—i—1)+3}], where 1 <4 < n —3. And by G"~* we denote
G?iiﬂ — V4(n—i), where 1 < i < n — 3, then since G™~* has a cut-vertex
Vg(n—i—1)s G?ii and G;L*i are two induced subgraphs of G*~*. Then by The-
orem 1.3, we get mr(G"~%) = mr(G} " — Vig(n—i—1)) + mr(G5 ¢ — Vg(n—i—1)) +
min{z’ lrv4(n—i71) (G”ll_l) + T'U4(n7i—1) (Gg_l)}

Since G"' = G} — vyn_1), the graph G"~' has a cut-vertex vy;,—_o)
and two induced subgraphs G?fl = G"[{v1,v2,...,V4m—2)}] and G§71 =
G [{Va(n—2)» Va(n—2)+1s Va(n—2)+2, Va(n—2)+3}]- Then we get

mr(G" ') =mr(G} " - Vg(n—2)) + mr(Gy ' — Vg(n—2))
+min{2, 7y, , (GT™") + Tuy_o (G5}
Continuing in this way, we have
mr(G?) = mr(G? — vg) + mr(Gs — vg) + min{2, 7, (G3) + 7, (G3)}.

Note that mr(G3 — vg) = mr(G3[{v1,ve,...,v7}]) = mr(L(P o Ks)) = 4 by
Lemma 2.1, mr(G3 — vg) = mr(G3[{vg, v10,v11}]) = mr(K3) = 1, 7, (G3) =
mr(G3) — mr(G3 —vg) =0 and 7, (G3) = mr(G3) —mr(G3 —vg) =2 —-1=1.
Hence mr(G?®) = 44+ 1+ 1 = 6. Moreover mr(G5 ™" — v, ;1) = mr(K3) = 1,
oo 1 (G =0and r,, ,,,(G57") =1, for 1 <i < n-—3. Sowe have
mr(G") =4+ (n—2)(1+1) =2n. O

Now let us consider the minimum rank of L(C), o K;) for any ¢, not just for
t = 1,2 as in the above theorem, in which we applied the cut-vertex reduction
method, as well as Lemma 2.1 for the proof. The case of ¢ = 2 is treated in [2],
where L(C), o K53) is called the full house ciclo. Various bounds of minimum
rank, maximum nullity and zero forcing number are obtained to find their exact
values in [2]. For the case of ¢ greater than or equal to 3 the cut-vertex reduction
is too complicated, hence we calculate the upper bound of zero forcing number
of L(C,, o K¢) by the ordinary color change rule in Theorem 2.4 and obtain the
lower and upper bound of minimum rank of L(C,, o K;) for any ¢ in Theorem
2.5.
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The t,k-pineapple (with t > 3,k > 2) is P, j, = K, UK j, such that K, N K7
is the vertex of Kjj of degree k. Note that L(C), o K;) is the ciclo C,(G),
where G is the line graph of the t 4 1, 2-pineapple P;11,2. So we can draw the
Figure 5 for the case t = 3.

F1GURE 5. The graph C,, o K3 and its line graph.

As shown in Figure 5 for the special case of t = 3, each vertex of L(C), o K})
must belong to one of the following 3 types:

(1) n vertices 12,23,...,(n — 1)n,nl obtained from all edges of Cy,;

(2) txn vertices iaq,ias, ...,ia; obtained from all edges which connect the
i-th Ky-copy to each vertex i of C),, where i =1,2,...,n;
(3) (;) vertices aiaso, aias,...,a;_1a; obtained from (;) edges of each K-

copy, so all together (;) X m vertices of this type.

Note that all vertices of each type has the identical degree. In fact, the degree
of the first type is 2(¢ + 1), the second type is (t — 1) + (¢t — 1) + 2 = 2t and
third type is 2(¢t — 1).

Theorem 2.3. Fort > 2, the zero forcing number Z(L(P;41,2)) of the line
graph of the t+1,2-pineapple P11 2 is less than or equal to |L(P;2)| = (;) +2.

Proof. We claim the set Z = {12, 1ay,a1aq9,...,a:—1a¢} is a zero forcing set.
Indeed, each vertex of type (3) is adjacent to two vertices of type (2). Since all
vertices of type (3) and a vertex la; of type (2) are black, the other vertices
lag, lag, ..., la; of type (2) are forced. And each vertex of type (2) is adjacent
two vertices of type (1). Since all vertices of type (2) and a vertex 12 of type
(1) are black, the other vertex nl is forced. So the set Z is a zero forcing set
and Z(L(Piy12)) < |Z] = (3) +2. O

Theorem 2.4. The zero forcing number Z(L(Cy 0 Ky)) of line graph of Cy, 0 Ky
is less than or equal to n((}) +1).

Proof. Our line graph L(C,, o K;) is the union of n copies of G of Theorem
2.3. Each G-copy includes one of the n-cycle edges {12, 23}, {23, 34}, ...,
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{n1,12}. We force the first G-copy, say G1, with the edge {12, 23} of C,,, then
the second G-copy, Ga, with the edge {23, 34} of C,,, and continue this way
to end up forcing the last G-copy, G, with the edge {n1,12} of C,,. We claim
that Z(L(C, o K)) = Z(G) + (n — 2) x {Z(GQ) — 1} + {Z(G) — 2}. Indeed,
since G; N G;41 is the single vertex (i + 1)(¢ 4+ 2) which is a cycle vertex (of
type (3)), where ¢« = 1,2,...,n — 1. We have that Z(G; U G3) is precisely
Z(Gl) + {Z(Gg) — 1} and that Z(Gl UGaU---U Gn—l) = Z(Gl) + {Z(Gg) -
1} 4+ +{Z(Gn-1) — 1} = Z(G) + (n — 2){Z(G) — 1}. When we reach to
force the last GG, since we have already made two cycle vertices n1,12 of G,,
into black, the zero forcing number Z(L(C,, o K;)) goes up only Z(G;)—2 from
Z(G1U---UGp_1). Thus we obtain the result. O

The following theorem is a generalized version of Theorem 2.2 for any ¢.

Theorem 2.5. Forn >3, nt <mr(L(C, o K})) < nt+n—2 and mr(L(C), o
K;)) —mr(L(K,)) < nt.

Proof. To obtain the upper bound of mr(L(C,, o K})), it is well known, that
if H is a subgraph of G (not-necessarily induced), then L(H) is an induced
subgraph of L(G). Since |C,, o K¢| = n(t + 1), L(C, o K;) is an induced
subgraph of L(K,;41)). So we get

mr(L(Cp o Ky)) < mr(L(Kpi41))) =n(t+1) =2
by Observation 1.1(2) and Theorem 1.2(1).
Now for the lower bound of mr(C), o K), we have
mr(L(Cy 0 Ky)) = |L(Cy 0 Ki)| — M(L(Cy, 0 Ky))
by Observation 1.1(1). Then by Theorem 1.4, we have
mr(L(Cp 0 K7)) > |L(Cr 0 )| — Z(L(Co 0 Ko)).
Note that [L(Cy 0 Ky)| =n ((5) +t + 1). Therefore

mr(L(C, 0 K;)) > (t+ 1)n + n(é) — n((é) + 1) =nt
by Theorem 2.4. [l
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